Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 59

Publication Record

Connections

VacA Targets Myeloid Cells in the Gastric Lamina Propria To Promote Peripherally Induced Regulatory T-Cell Differentiation and Persistent Infection.
Altobelli A, Bauer M, Velez K, Cover TL, Müller A
(2019) MBio 10:
MeSH Terms: Animals, Bacterial Proteins, Cell Differentiation, Dendritic Cells, Disease Models, Animal, Gastric Mucosa, Helicobacter Infections, Helicobacter pylori, Immune Evasion, Interleukin-10, Interleukin-23, Lung, Macrophages, Mice, Mucous Membrane, Myeloid Cells, T-Lymphocytes, Regulatory, Transforming Growth Factor beta
Show Abstract · Added April 11, 2019
The gastric bacterium causes a persistent infection that is directly responsible for gastric ulcers and gastric cancer in some patients and protective against allergic and other immunological disorders in others. The two outcomes of the -host interaction can be modeled in mice that are infected as immunocompetent adults and as neonates, respectively. Here, we have investigated the contribution of the immunomodulator VacA to -specific local and systemic immune responses in both models. We found that neonatally infected mice are colonized at higher levels than mice infected as adults and fail to generate effector T-cell responses to the bacteria; rather, T-cell responses in neonatally infected mice are skewed toward Foxp3-positive (Foxp3) regulatory T cells that are neuropilin negative and express RORγt. We found these peripherally induced regulatory T cells (pTregs) to be enriched, in a VacA-dependent manner, not only in the gastric mucosa but also in the lungs of infected mice. Pulmonary pTreg accumulation was observed in mice that have been infected neonatally with wild-type but not in mice that have been infected as adults or mice infected with a VacA null mutant. Finally, we traced VacA to gastric lamina propria myeloid cells and show that it suppressed interleukin-23 (IL-23) expression by dendritic cells and induced IL-10 and TGF-β expression in macrophages. Taken together, the results are consistent with the idea that creates a tolerogenic environment through its immunomodulator VacA, which skews T-cell responses toward Tregs, favors persistence, and affects immunity at distant sites. has coexisted with humans for at least 60.000 years and has evolved persistence strategies that allow it to evade host immunity and colonize its host for life. The VacA protein is expressed by all strains and is required for high-level persistent infection in experimental mouse models. Here, we show that VacA targets myeloid cells in the gastric mucosa to create a tolerogenic environment that facilitates regulatory T-cell differentiation, while suppressing effector T-cell priming and functionality. Tregs that are induced in the periphery during infection can be found not only in the stomach but also in the lungs of infected mice, where they are likely to affect immune responses to allergens.
Copyright © 2019 Altobelli et al.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Healthy Donor Polyclonal IgMs Diminish B-Lymphocyte Autoreactivity, Enhance Regulatory T-Cell Generation, and Reverse Type 1 Diabetes in NOD Mice.
Wilson CS, Chhabra P, Marshall AF, Morr CV, Stocks BT, Hoopes EM, Bonami RH, Poffenberger G, Brayman KL, Moore DJ
(2018) Diabetes 67: 2349-2360
MeSH Terms: Animals, B-Lymphocytes, Diabetes Mellitus, Type 1, Immunoglobulin M, Mice, Mice, Inbred NOD, T-Lymphocytes, Regulatory
Show Abstract · Added August 23, 2018
Autoimmune diseases such as type 1 diabetes (T1D) arise from unrestrained activation of effector lymphocytes that destroy target tissues. Many efforts have been made to eliminate these effector lymphocytes, but none has produced a long-term cure. An alternative to depletion therapy is to enhance endogenous immune regulation. Among these endogenous alternatives, naturally occurring Igs have been applied for inflammatory disorders but have lacked potency in antigen-specific autoimmunity. We hypothesized that naturally occurring polyclonal IgMs, which represent the majority of circulating, noninduced antibodies but are present only in low levels in therapeutic Ig preparations, possess the most potent capacity to restore immune homeostasis. Treatment of diabetes-prone NOD mice with purified IgM isolated from Swiss Webster (SW) mice (nIgM) reversed new-onset diabetes, eliminated autoreactive B lymphocytes, and enhanced regulatory T-cell (Treg) numbers both centrally and peripherally. Conversely, IgM from prediabetic NOD mice could not restore this endogenous regulation, which represents an unrecognized component of T1D pathogenesis. Of note, IgM derived from healthy human donors was similarly able to expand human CD4 Tregs in humanized mice and produced permanent diabetes protection in treated NOD mice. Overall, these studies demonstrate that a potent, endogenous regulatory mechanism, nIgM, is a promising option for reversing autoimmune T1D in humans.
© 2018 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes.
Shen X, Liu L, Peek RM, Acra SA, Moore DJ, Wilson KT, He F, Polk DB, Yan F
(2018) Mucosal Immunol 11: 1316-1328
MeSH Terms: Animals, Bacterial Proteins, Cell Differentiation, Cell Proliferation, Epithelial Cells, ErbB Receptors, Female, Hydrogels, Immunity, Innate, Immunoglobulin A, Intestinal Mucosa, Lactobacillus rhamnosus, Mice, Mice, Inbred C57BL, Probiotics, T-Lymphocytes, Regulatory, Tight Junctions, Time, Transcriptional Activation
Show Abstract · Added June 8, 2018
The beneficial effects of the gut microbiota on growth in early life are well known. However, knowledge about the mechanisms underlying regulating intestinal development by the microbiota is limited. p40, a Lactobacillus rhamnosus GG-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells for protecting the intestinal epithelium against injury and inflammation. Here, we developed p40-containing pectin/zein hydrogels for targeted delivery of p40 to the small intestine and the colon. Treatment with p40-containing hydrogels from postnatal day 2 to 21 significantly enhanced bodyweight gain prior to weaning and functional maturation of the intestine, including intestinal epithelial cell proliferation, differentiation, and tight junction formation, and IgA production in early life in wild-type mice. These p40-induced effects were abolished in mice with specific deletion of EGFR in intestinal epithelial cells, suggesting that transactivation of EGFR in intestinal epithelial cells may mediate p40-regulated intestinal development. Furthermore, neonatal p40 treatment reduced the susceptibility to intestinal injury and colitis and promoted protective immune responses, including IgA production and differentiation of regulatory T cells, in adult mice. These findings reveal novel roles of neonatal supplementation of probiotic-derived factors in promoting EGFR-mediated maturation of intestinal functions and innate immunity, which likely promote long-term beneficial outcomes.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Host Expression of the CD8 Treg/NK Cell Restriction Element Qa-1 is Dispensable for Transplant Tolerance.
Stocks BT, Wilson CS, Marshall AF, Brewer LA, Moore DJ
(2017) Sci Rep 7: 11181
MeSH Terms: Animals, B-Lymphocytes, CD4-Positive T-Lymphocytes, Histocompatibility Antigens Class I, Immune Tolerance, Killer Cells, Natural, Mice, Inbred C57BL, Mice, Knockout, T-Lymphocytes, Regulatory, Transplantation
Show Abstract · Added September 13, 2017
Disruption of the non-classical Major Histocompatibility Complex (MHC) Ib molecule Qa-1 impairs CD8 Treg and natural killer (NK) cell function and promotes a lupus-like autoimmune disease. This immune perturbation would be expected to enhance anti-transplant responses and impair tolerance induction, but the effect of Qa-1 deficiency on the transplant response has not been previously reported. Qa-1 deficiency enhanced CD4 TFH and germinal center (GC) B cell numbers in naïve mice and hastened islet allograft rejection. Despite enhanced immunity in B6.Qa-1 mice, these mice did not generate an excessive primary CD4 TFH cell response nor an enhanced alloantibody reaction. Both CD8 Tregs and NK cells, which often regulate other cells through host Qa-1 expression, were targets of anti-CD45RB therapy that had not been previously recognized. However, B6.Qa-1 mice remained susceptible to anti-CD45RB mediated suppression of the alloantibody response and transplant tolerance induction to mismatched islet allografts. Overall, despite enhanced immunity as demonstrated by augmented CD4 TFH/GC B cell numbers and hastened islet allograft rejection in naïve 12-week old Qa-1 deficient mice, the CD8 Treg/NK cell restriction element Qa-1 does not regulate the primary cellular or humoral alloresponse and is not required for long-term transplant tolerance.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Helicobacter pylori and its secreted immunomodulator VacA protect against anaphylaxis in experimental models of food allergy.
Kyburz A, Urban S, Altobelli A, Floess S, Huehn J, Cover TL, Müller A
(2017) Clin Exp Allergy 47: 1331-1341
MeSH Terms: Allergens, Anaphylaxis, Animals, Bacterial Proteins, CpG Islands, Cytokines, DNA Methylation, Disease Models, Animal, Food Hypersensitivity, Helicobacter pylori, Immunoglobulin E, Immunologic Factors, Male, Mice, Peanut Hypersensitivity, Spleen, T-Lymphocytes, Regulatory
Show Abstract · Added March 21, 2018
BACKGROUND - Food allergy is an increasingly common health problem in Western populations. Epidemiological studies have suggested both positive and negative associations between food allergy and infection with the gastric bacterium Helicobacter pylori.
OBJECTIVE - The objective of this work was to investigate whether experimental infection with H. pylori, or prophylactic treatment with H. pylori-derived immunomodulatory molecules, affects the onset and severity of food allergy, either positively or negatively.
METHODS - We infected neonatal C57BL/6 or C3H mice with H. pylori or treated animals with H. pylori components (bacterial lysate or the immunomodulator VacA) and subsequently subjected them to four different protocols for food allergy induction, using either ovalbumin or peanut extract as allergens for sensitization and challenge. Readouts included anaphylaxis scoring, quantification of allergen-specific serum IgE and IgG1 and of the mast cell protease MCPT1, as well as splenic T-helper-2 cell-derived cytokine production. Mesenteric lymph node CD4 FoxP3 regulatory T cells were subjected to flow cytometric quantification and sorting followed by qRT-PCR, and to DNA methylation analyses of the Treg-specific demethylated region (TSDR) within the FOXP3 locus.
RESULTS - Mice that had been infected with H. pylori or treated with H. pylori-derived immunomodulators showed reduced anaphylaxis upon allergen sensitization and challenge, irrespective of the allergen used. Most of the immunologic assays confirmed a protective effect of H. pylori. CD4 FoxP3 T cells were more abundant in protected mice and exhibited a stable Treg phenotype characterized by FOXP3 TSDR demethylation.
CONCLUSIONS AND CLINICAL RELEVANCE - Helicobacter pylori confers protection against the anaphylaxis associated with ovalbumin and peanut allergy and affects the epigenome of T cells, thereby promoting stable Treg differentiation and functionality. Prophylactic treatment with H. pylori-derived immunomodulators appears to be a promising strategy for food allergy prevention.
© 2017 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells.
Ooi JD, Petersen J, Tan YH, Huynh M, Willett ZJ, Ramarathinam SH, Eggenhuizen PJ, Loh KL, Watson KA, Gan PY, Alikhan MA, Dudek NL, Handel A, Hudson BG, Fugger L, Power DA, Holt SG, Coates PT, Gregersen JW, Purcell AW, Holdsworth SR, La Gruta NL, Reid HH, Rossjohn J, Kitching AR
(2017) Nature 545: 243-247
MeSH Terms: Animals, Anti-Glomerular Basement Membrane Disease, Autoimmunity, Base Sequence, CD4-Positive T-Lymphocytes, Collagen Type IV, Cytokines, Female, Forkhead Transcription Factors, HLA-DR Serological Subtypes, HLA-DR1 Antigen, Humans, Immunodominant Epitopes, Male, Mice, Mice, Transgenic, Models, Molecular, T-Lymphocytes, Regulatory
Show Abstract · Added June 2, 2017
Susceptibility and protection against human autoimmune diseases, including type I diabetes, multiple sclerosis, and Goodpasture disease, is associated with particular human leukocyte antigen (HLA) alleles. However, the mechanisms underpinning such HLA-mediated effects on self-tolerance remain unclear. Here we investigate the molecular mechanism of Goodpasture disease, an HLA-linked autoimmune renal disorder characterized by an immunodominant CD4 T-cell self-epitope derived from the α3 chain of type IV collagen (α3). While HLA-DR15 confers a markedly increased disease risk, the protective HLA-DR1 allele is dominantly protective in trans with HLA-DR15 (ref. 2). We show that autoreactive α3-specific T cells expand in patients with Goodpasture disease and, in α3-immunized HLA-DR15 transgenic mice, α3-specific T cells infiltrate the kidney and mice develop Goodpasture disease. HLA-DR15 and HLA-DR1 exhibit distinct peptide repertoires and binding preferences and present the α3 epitope in different binding registers. HLA-DR15-α3 tetramer T cells in HLA-DR15 transgenic mice exhibit a conventional T-cell phenotype (T) that secretes pro-inflammatory cytokines. In contrast, HLA-DR1-α3 tetramer T cells in HLA-DR1 and HLA-DR15/DR1 transgenic mice are predominantly CD4Foxp3 regulatory T cells (T cells) expressing tolerogenic cytokines. HLA-DR1-induced T cells confer resistance to disease in HLA-DR15/DR1 transgenic mice. HLA-DR15 and HLA-DR1 healthy human donors display altered α3-specific T-cell antigen receptor usage, HLA-DR15-α3 tetramer Foxp3 T and HLA-DR1-α3 tetramer Foxp3CD25CD127 T dominant phenotypes. Moreover, patients with Goodpasture disease display a clonally expanded α3-specific CD4 T-cell repertoire. Accordingly, we provide a mechanistic basis for the dominantly protective effect of HLA in autoimmune disease, whereby HLA polymorphism shapes the relative abundance of self-epitope specific T cells that leads to protection or causation of autoimmunity.
1 Communities
1 Members
0 Resources
18 MeSH Terms
Peripheral tolerance can be modified by altering KLF2-regulated Treg migration.
Pabbisetty SK, Rabacal W, Volanakis EJ, Parekh VV, Olivares-Villagómez D, Cendron D, Boyd KL, Van Kaer L, Sebzda E
(2016) Proc Natl Acad Sci U S A 113: E4662-70
MeSH Terms: Animals, Autoimmunity, Cell Movement, Immune Tolerance, Kruppel-Like Transcription Factors, Lymphoid Tissue, Mice, Receptors, Lymphocyte Homing, T-Lymphocytes, Regulatory
Show Abstract · Added July 30, 2016
Tregs are essential for maintaining peripheral tolerance, and thus targeting these cells may aid in the treatment of autoimmunity and cancer by enhancing or reducing suppressive functions, respectively. Before these cells can be harnessed for therapeutic purposes, it is necessary to understand how they maintain tolerance under physiologically relevant conditions. We now report that transcription factor Kruppel-like factor 2 (KLF2) controls naive Treg migration patterns via regulation of homeostatic and inflammatory homing receptors, and that in its absence KLF2-deficient Tregs are unable to migrate efficiently to secondary lymphoid organs (SLOs). Diminished Treg trafficking to SLOs is sufficient to initiate autoimmunity, indicating that SLOs are a primary site for maintaining peripheral tolerance under homeostatic conditions. Disease severity correlates with impaired Treg recruitment to SLOs and, conversely, promotion of Tregs into these tissues can ameliorate autoimmunity. Moreover, stabilizing KLF2 expression within the Treg compartment enhances peripheral tolerance by diverting these suppressive cells from tertiary tissues into SLOs. Taken together, these results demonstrate that peripheral tolerance is enhanced or diminished through modulation of Treg trafficking to SLOs, a process that can be controlled by adjusting KLF2 protein levels.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment.
Kordasti S, Costantini B, Seidl T, Perez Abellan P, Martinez Llordella M, McLornan D, Diggins KE, Kulasekararaj A, Benfatto C, Feng X, Smith A, Mian SA, Melchiotti R, de Rinaldis E, Ellis R, Petrov N, Povoleri GA, Chung SS, Thomas NS, Farzaneh F, Irish JM, Heck S, Young NS, Marsh JC, Mufti GJ
(2016) Blood 128: 1193-205
MeSH Terms: Adult, Aged, Anemia, Aplastic, Female, Forkhead Transcription Factors, Humans, Immunologic Memory, Immunosuppression, Interleukin-2, Interleukin-7 Receptor alpha Subunit, Leukocyte Common Antigens, Male, Middle Aged, Receptors, CCR4, STAT5 Transcription Factor, T-Lymphocytes, Regulatory, fas Receptor
Show Abstract · Added June 10, 2016
Idiopathic aplastic anemia (AA) is an immune-mediated and serious form of bone marrow failure. Akin to other autoimmune diseases, we have previously shown that in AA regulatory T cells (Tregs) are reduced in number and function. The aim of this study was to further characterize Treg subpopulations in AA and investigate the potential correlation between specific Treg subsets and response to immunosuppressive therapy (IST) as well as their in vitro expandability for potential clinical use. Using mass cytometry and an unbiased multidimensional analytical approach, we identified 2 specific human Treg subpopulations (Treg A and Treg B) with distinct phenotypes, gene expression, expandability, and function. Treg B predominates in IST responder patients, has a memory/activated phenotype (with higher expression of CD95, CCR4, and CD45RO within FOXP3(hi), CD127(lo) Tregs), expresses the interleukin-2 (IL-2)/STAT5 pathway and cell-cycle commitment genes. Furthermore, in vitro-expanded Tregs become functional and take on the characteristics of Treg B. Collectively, this study identifies human Treg subpopulations that can be used as predictive biomarkers for response to IST in AA and potentially other autoimmune diseases. We also show that Tregs from AA patients are IL-2-sensitive and expandable in vitro, suggesting novel therapeutic approaches such as low-dose IL-2 therapy and/or expanded autologous Tregs and meriting further exploration.
2 Communities
1 Members
0 Resources
17 MeSH Terms
Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans.
Itani HA, McMaster WG, Saleh MA, Nazarewicz RR, Mikolajczyk TP, Kaszuba AM, Konior A, Prejbisz A, Januszewicz A, Norlander AE, Chen W, Bonami RH, Marshall AF, Poffenberger G, Weyand CM, Madhur MS, Moore DJ, Harrison DG, Guzik TJ
(2016) Hypertension 68: 123-32
MeSH Terms: Adult, Analysis of Variance, Angiotensin II, Animals, Antibodies, Monoclonal, Humanized, Cells, Cultured, Chi-Square Distribution, Disease Models, Animal, Humans, Hypertension, Kidney, Lymphocyte Activation, Mice, Middle Aged, Random Allocation, Reference Values, Sampling Studies, Statistics, Nonparametric, T-Lymphocytes, Regulatory
Show Abstract · Added May 25, 2016
Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.
© 2016 American Heart Association, Inc.
1 Communities
2 Members
0 Resources
19 MeSH Terms
Chronic NF-κB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs.
Zaynagetdinov R, Sherrill TP, Gleaves LA, Hunt P, Han W, McLoed AG, Saxon JA, Tanjore H, Gulleman PM, Young LR, Blackwell TS
(2016) Oncotarget 7: 5470-82
MeSH Terms: Animals, Blotting, Western, CD8-Positive T-Lymphocytes, Cells, Cultured, Epithelium, Female, Flow Cytometry, Humans, I-kappa B Kinase, Immunosuppressive Agents, Inflammation, Interleukin-10, Lung, Lung Neoplasms, Macrophages, Alveolar, Male, Mice, Mice, Transgenic, NF-kappa B, Pulmonary Disease, Chronic Obstructive, RNA, Messenger, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction, T-Lymphocytes, Regulatory, Transforming Growth Factor beta
Show Abstract · Added February 22, 2016
Nuclear Factor (NF)-κB is positioned to provide the interface between COPD and carcinogenesis through regulation of chronic inflammation in the lungs. Using a tetracycline-inducible transgenic mouse model that conditionally expresses activated IκB kinase β (IKKβ) in airway epithelium (IKTA), we found that sustained NF-κB signaling results in chronic inflammation and emphysema by 4 months. By 11 months of transgene activation, IKTA mice develop lung adenomas. Investigation of lung inflammation in IKTA mice revealed a substantial increase in M2-polarized macrophages and CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Depletion of alveolar macrophages in IKTA mice reduced Tregs, increased lung CD8+ lymphocytes, and reduced tumor numbers following treatment with the carcinogen urethane. Alveolar macrophages from IKTA mice supported increased generation of inducible Foxp3+ Tregs ex vivo through expression of TGFβ and IL-10. Targeting of TGFβ and IL-10 reduced the ability of alveolar macrophages from IKTA mice to induce Foxp3 expression on T cells. These studies indicate that sustained activation of NF-κB pathway links COPD and lung cancer through generation and maintenance of a pro-tumorigenic inflammatory environment consisting of alternatively activated macrophages and regulatory T cells.
1 Communities
1 Members
0 Resources
26 MeSH Terms