Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 171

Publication Record

Connections

Biophysical model-based parameters to classify tumor recurrence from radiation-induced necrosis for brain metastases.
Narasimhan S, Johnson HB, Nickles TM, Miga MI, Rana N, Attia A, Weis JA
(2019) Med Phys 46: 2487-2496
MeSH Terms: Brain Neoplasms, Humans, Magnetic Resonance Imaging, Models, Biological, Necrosis, Patient-Specific Modeling, Radiation Injuries, Radiosurgery, Recurrence, Retrospective Studies
Show Abstract · Added April 2, 2019
PURPOSE - Stereotactic radiosurgery (SRS) is used for local control treatment of patients with intracranial metastases. As a result of SRS, some patients develop radiation-induced necrosis. Radiographically, radiation-induced necrosis can appear similar to tumor recurrence in magnetic resonance (MR) T -weighted contrast-enhanced imaging, T -weighted MR imaging, and Fluid-Attenuated Inversion Recovery (FLAIR) MR imaging. Radiographic ambiguities often necessitate invasive brain biopsies to determine lesion etiology or cause delayed subsequent therapy initiation. We use a biomechanically coupled tumor growth model to estimate patient-specific model parameters and model-derived measures to noninvasively classify etiology of enhancing lesions in this patient population.
METHODS - In this initial, preliminary retrospective study, we evaluated five patients with tumor recurrence and five with radiation-induced necrosis. Longitudinal patient-specific MR imaging data were used in conjunction with the model to parameterize tumor cell proliferation rate and tumor cell diffusion coefficient, and Dice correlation coefficients were used to quantify degree of correlation between model-estimated mechanical stress fields and edema visualized from MR imaging.
RESULTS - Results found four statistically relevant parameters which can differentiate tumor recurrence and radiation-induced necrosis.
CONCLUSIONS - This preliminary investigation suggests potential of this framework to noninvasively determine the etiology of enhancing lesions in patients who previously underwent SRS for intracranial metastases.
© 2019 American Association of Physicists in Medicine.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Linear Accelerator-Based Stereotactic Radiosurgery for Cranial Intraparenchymal Metastasis of a Malignant Peripheral Nerve Sheath Tumor: Case Report and Review of the Literature.
Fenlon JB, Khattab MH, Ferguson DC, Luo G, Keedy VL, Chambless LB, Kirschner AN
(2019) World Neurosurg 123: 123-127
MeSH Terms: Adult, Brain Neoplasms, Humans, Magnetic Resonance Imaging, Male, Nerve Sheath Neoplasms, Neurofibrosarcoma, Particle Accelerators, Positron-Emission Tomography, Radiosurgery
Show Abstract · Added April 2, 2019
BACKGROUND - Malignant peripheral nerve sheath tumors (MPNSTs) are rare, aggressive soft tissue sarcomas. MPNST intracranial metastasis is exceedingly rare with only 22 documented cases in the literature and, to our knowledge, only 1 case with intraparenchymal brain metastasis. Most have been managed surgically; however, 2 documented cases were treated with Gamma Knife radiosurgery. Excluding this case report, there are no other documented cases of linear accelerator-based stereotactic radiosurgery (SRS) to treat MPNST brain metastasis.
CASE DESCRIPTION - A 41-year-old man with MPNST of the lung initially underwent tumor resection. He developed multiple systemic metastases that were managed with directed radiation therapy. A parietal brain metastasis was treated with linear accelerator-based SRS. Following SRS therapy, the patient was treated with a tropomyosin receptor kinase inhibitor. Complete resolution of brain metastasis was seen on brain magnetic resonance imaging 5 months after treatment with SRS. At 11 months after SRS, there was no evidence of recurrence or progression of the intraparenchymal disease. The patient continued to have stable extracranial disease on his ninth cycle of systemic treatment.
CONCLUSIONS - This report provides important insights into efficacy of linear accelerator-based SRS to treat MPNST brain metastases.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery.
Albaugh VL, Banan B, Antoun J, Xiong Y, Guo Y, Ping J, Alikhan M, Clements BA, Abumrad NN, Flynn CR
(2019) Gastroenterology 156: 1041-1051.e4
MeSH Terms: Anastomosis, Surgical, Animals, Anticholesteremic Agents, Bariatric Surgery, Bile Acids and Salts, Blood Glucose, Cholestyramine Resin, Diet, High-Fat, Gallbladder, Glucagon-Like Peptide 1, Glucagon-Like Peptide-1 Receptor, Glucose Tolerance Test, Ileum, Insulin Resistance, Intestines, Lymph, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Receptors, Cytoplasmic and Nuclear, Receptors, G-Protein-Coupled, Signal Transduction, Verrucomicrobia, Weight Loss
Show Abstract · Added January 4, 2019
BACKGROUND & AIMS - Bile diversion to the ileum (GB-IL) has strikingly similar metabolic and satiating effects to Roux-en-Y gastric bypass (RYGB) in rodent obesity models. The metabolic benefits of these procedures are thought to be mediated by increased bile acids, although parallel changes in body weight and other confounding variables limit this interpretation.
METHODS - Global G protein-coupled bile acid receptor-1 null (Tgr5) and intestinal-specific farnesoid X receptor null (Fxr) mice on high-fat diet as well as wild-type C57BL/6 and glucagon-like polypeptide 1 receptor deficient (Glp-1r) mice on chow diet were characterized following GB-IL.
RESULTS - GB-IL induced weight loss and improved oral glucose tolerance in Tgr5, but not Fxr mice fed a high-fat diet, suggesting a role for intestinal Fxr. GB-IL in wild-type, chow-fed mice prompted weight-independent improvements in glycemia and glucose tolerance secondary to augmented insulin responsiveness. Improvements were concomitant with increased levels of lymphatic GLP-1 in the fasted state and increased levels of intestinal Akkermansia muciniphila. Improvements in fasting glycemia after GB-IL were mitigated with exendin-9, a GLP-1 receptor antagonist, or cholestyramine, a bile acid sequestrant. The glucoregulatory effects of GB-IL were lost in whole-body Glp-1r mice.
CONCLUSIONS - Bile diversion to the ileum improves glucose homeostasis via an intestinal Fxr-Glp-1 axis. Altered intestinal bile acid availability, independent of weight loss, and intestinal Akkermansia muciniphila appear to mediate the metabolic changes observed after bariatric surgery and might be manipulated for treatment of obesity and diabetes.
Copyright © 2019 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
25 MeSH Terms
Attenuation of diet-induced hypothalamic inflammation following bariatric surgery in female mice.
Herrick MK, Favela KM, Simerly RB, Abumrad NN, Bingham NC
(2018) Mol Med 24: 56
MeSH Terms: Animals, Bariatric Surgery, Diet, High-Fat, Female, Hypothalamus, Inflammation, Mice, Inbred C57BL, Obesity
Show Abstract · Added April 11, 2019
BACKGROUND - Exposure of rodents to chronic high-fat diet (HFD) results in upregulation of inflammatory markers and proliferation of microglia within the mediobasal hypothalamus. Such hypothalamic inflammation is associated with metabolic dysfunction, central leptin resistance, and maintenance of obesity. Bariatric surgeries result in long-term stable weight loss and improved metabolic function. However, the effects of such surgical procedures on HFD-induced hypothalamic inflammation are unknown. We sought to characterize the effects of two bariatric surgical procedures, Roux-en-Y gastric bypass (RYGB) and biliary diversion (BD-IL), in female mice with particular emphasis on HFD-induced hypothalamic inflammation and microgliosis.
METHODS - RYGB and BD-IL were performed on diet-induced obese (DIO) mice. Quantitative RT-PCR and fluorescent microscopy were used to evaluate hypothalamic inflammatory gene expression and microgliosis. Results were compared to lean (CD), DIO sham-surgerized mice (DIO-SHAM), and dietary weight loss (DIO-Rev) controls.
RESULTS - In female mice, RYGB and BD-IL result in normalization of hypothalamic inflammatory gene expression and microgliosis within 8 weeks of surgery, despite ongoing exposure to HFD. Paralleling these results, the hypothalamic expression levels of the orexigenic neuropeptide Agrp and the anorexic response of surgical mice to exogenous leptin were comparable to lean controls (CD). In contrast, results from DIO-Rev mice were comparable to DIO-SHAM mice, despite transition back to standard rodent show and normalization of weight.
CONCLUSION - Bariatric surgery attenuates HFD-induced hypothalamic inflammation and microgliosis and restores leptin sensitivity, despite ongoing exposure to HFD.
0 Communities
1 Members
0 Resources
MeSH Terms
Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward.
Reddy IA, Smith NK, Erreger K, Ghose D, Saunders C, Foster DJ, Turner B, Poe A, Albaugh VL, McGuinness O, Hackett TA, Grueter BA, Abumrad NN, Flynn CR, Galli A
(2018) PLoS Biol 16: e2006682
MeSH Terms: Animals, Bariatric Surgery, Behavior, Animal, Bile, Choice Behavior, Cocaine, Dopamine, Gallbladder, Ileum, Male, Mice, Inbred C57BL, Mice, Knockout, Motor Activity, Nucleus Accumbens, Reward, Signal Transduction
Show Abstract · Added January 4, 2019
The gut-to-brain axis exhibits significant control over motivated behavior. However, mechanisms supporting this communication are poorly understood. We reveal that a gut-based bariatric surgery chronically elevates systemic bile acids and attenuates cocaine-induced elevations in accumbal dopamine. Notably, this surgery reduces reward-related behavior and psychomotor sensitization to cocaine. Utilizing a knockout mouse model, we have determined that a main mediator of these post-operative effects is the Takeda G protein-coupled bile acid receptor (TGR5). Viral restoration of TGR5 in the nucleus accumbens of TGR5 knockout animals is sufficient to restore cocaine reward, centrally localizing this TGR5-mediated modulation. These findings define TGR5 and bile acid signaling as pharmacological targets for the treatment of cocaine abuse and reveal a novel mechanism of gut-to-brain communication.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Does Bariatric Surgery Affect Breast-Milk Composition?
Albaugh VL
(2018) J Nutr 148: 1071-1072
MeSH Terms: Adult, Bariatric Surgery, Female, Humans, Milk, Human
Added January 4, 2019
0 Communities
1 Members
0 Resources
5 MeSH Terms
A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies.
Englot DJ
(2018) Epilepsy Behav 80: 68-74
MeSH Terms: Algorithms, Drug Resistant Epilepsy, Electroencephalography, Epilepsy, Epilepsy, Generalized, Humans, Imaging, Three-Dimensional, Minimally Invasive Surgical Procedures, Quality of Life, Radiosurgery, Treatment Outcome
Show Abstract · Added September 25, 2018
Epilepsy surgery has seen numerous technological advances in both diagnostic and therapeutic procedures in recent years. This has increased the number of patients who may be candidates for intervention and potential improvement in quality of life. However, the expansion of the field also necessitates a broader understanding of how to incorporate both traditional and emerging technologies into the care provided at comprehensive epilepsy centers. This review summarizes both old and new surgical procedures in epilepsy using an example algorithm. While treatment algorithms are inherently oversimplified, incomplete, and reflect personal bias, they provide a general framework that can be customized to each center and each patient, incorporating differences in provider opinion, patient preference, and the institutional availability of technologies. For instance, the use of minimally invasive stereotactic electroencephalography (SEEG) has increased dramatically over the past decade, but many cases still benefit from invasive recordings using subdural grids. Furthermore, although surgical resection remains the gold-standard treatment for focal mesial temporal or neocortical epilepsy, ablative procedures such as laser interstitial thermal therapy (LITT) or stereotactic radiosurgery (SRS) may be appropriate and avoid craniotomy in many cases. Furthermore, while palliative surgical procedures were once limited to disconnection surgeries, several neurostimulation treatments are now available to treat eloquent cortical, bitemporal, and even multifocal or generalized epilepsy syndromes. An updated perspective in epilepsy surgery will help guide surgical decision making and lay the groundwork for data collection needed in future studies and trials.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
A novel conduit-based coaptation device for primary nerve repair.
Bamba R, Riley DC, Kelm ND, Cardwell N, Pollins AC, Afshari A, Nguyen L, Dortch RD, Thayer WP
(2018) Int J Neurosci 128: 563-569
MeSH Terms: Animals, Diffusion Tensor Imaging, Disease Models, Animal, Extracellular Matrix, Female, Microsurgery, Nerve Regeneration, Peripheral Nerve Injuries, Rats, Rats, Sprague-Dawley, Sciatic Nerve
Show Abstract · Added October 24, 2018
BACKGROUND - Conduit-based nerve repairs are commonly used for small nerve gaps, whereas primary repair may be performed if there is no tension on nerve endings. We hypothesize that a conduit-based nerve coaptation device will improve nerve repair outcomes by avoiding sutures at the nerve repair site and utilizing the advantages of a conduit-based repair.
METHODS - The left sciatic nerves of female Sprague-Dawley rats were transected and repaired using a novel conduit-based device. The conduit-based device group was compared to a control group of rats that underwent a standard end-to-end microsurgical repair of the sciatic nerve. Animals underwent behavioral assessments at weekly intervals post-operatively using the sciatic functional index (SFI) test. Animals were sacrificed at four weeks to obtain motor axon counts from immunohistochemistry. A sub-group of animals were sacrificed immediately post repair to obtain MRI images.
RESULTS - SFI scores were superior in rats which received conduit-based repairs compared to the control group. Motor axon counts distal to the injury in the device group at four weeks were statistically superior to the control group. MRI tractography was used to demonstrate repair of two nerves using the novel conduit device.
CONCLUSIONS - A conduit-based nerve coaptation device avoids sutures at the nerve repair site and leads to improved outcomes in a rat model. Conduit-based nerve repair devices have the potential to standardize nerve repairs while improving outcomes.
0 Communities
1 Members
0 Resources
MeSH Terms
Deformation correction for image guided liver surgery: An intraoperative fidelity assessment.
Clements LW, Collins JA, Weis JA, Simpson AL, Kingham TP, Jarnagin WR, Miga MI
(2017) Surgery 162: 537-547
MeSH Terms: Adult, Aged, Female, Follow-Up Studies, Hepatectomy, Humans, Imaging, Three-Dimensional, Liver, Liver Neoplasms, Male, Middle Aged, Monitoring, Intraoperative, Outcome Assessment, Health Care, Single-Blind Method, Statistics, Nonparametric, Surgery, Computer-Assisted, Treatment Outcome
Show Abstract · Added July 23, 2018
BACKGROUND - Although systems of 3-dimensional image-guided surgery are a valuable adjunct across numerous procedures, differences in organ shape between that reflected in the preoperative image data and the intraoperative state can compromise the fidelity of such guidance based on the image. In this work, we assessed in real time a novel, 3-dimensional image-guided operation platform that incorporates soft tissue deformation.
METHODS - A series of 125 alignment evaluations were performed across 20 patients. During the operation, the surgeon assessed the liver by swabbing an optically tracked stylus over the liver surface and viewing the image-guided operation display. Each patient had approximately 6 intraoperative comparative evaluations. For each assessment, 1 of only 2 types of alignments were considered: conventional rigid and novel deformable. The series of alignment types used was randomized and blinded to the surgeon. The surgeon provided a rating, R, from -3 to +3 for each display compared with the previous display, whereby a negative rating indicated degradation in fidelity and a positive rating an improvement.
RESULTS - A statistical analysis of the series of rating data by the clinician indicated that the surgeons were able to perceive an improvement (defined as a R > 1) of the model-based registration over the rigid registration (P = .01) as well as a degradation (defined as R < -1) when the rigid registration was compared with the novel deformable guidance information (P = .03).
CONCLUSION - This study provides evidence of the benefit of deformation correction in providing an accurate location for the liver for use in image-guided surgery systems.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Management of duodenal carcinoid tumors in the setting of morbid obesity.
Spann MD, Idrees K
(2017) Surg Obes Relat Dis 13: 1635-1637
MeSH Terms: Adult, Bariatric Surgery, Carcinoid Tumor, Duodenal Neoplasms, Duodenoscopy, Duodenum, Female, Gastrectomy, Humans, Incidental Findings, Lymph Node Excision, Obesity, Morbid, Preoperative Care
Added April 10, 2018
0 Communities
1 Members
0 Resources
13 MeSH Terms