Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 93

Publication Record

Connections

A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension.
Hemnes AR, Rathinasabapathy A, Austin EA, Brittain EL, Carrier EJ, Chen X, Fessel JP, Fike CD, Fong P, Fortune N, Gerszten RE, Johnson JA, Kaplowitz M, Newman JH, Piana R, Pugh ME, Rice TW, Robbins IM, Wheeler L, Yu C, Loyd JE, West J
(2018) Eur Respir J 51:
MeSH Terms: Adult, Aged, Animals, Biomarkers, Cytokines, Female, Gene Expression, Humans, Hypertension, Pulmonary, Male, Middle Aged, Peptidyl-Dipeptidase A, Pilot Projects, Proof of Concept Study, Proto-Oncogene Proteins, Pulmonary Artery, Receptors, G-Protein-Coupled, Superoxide Dismutase, Swine, Vascular Resistance
Show Abstract · Added March 26, 2019
Pulmonary arterial hypertension (PAH) is a deadly disease with no cure. Alternate conversion of angiotensin II (AngII) to angiotensin-(1-7) (Ang-(1-7)) by angiotensin-converting enzyme 2 (ACE2) resulting in Mas receptor (Mas1) activation improves rodent models of PAH. Effects of recombinant human (rh) ACE2 in human PAH are unknown. Our objective was to determine the effects of rhACE2 in PAH.We defined the molecular effects of Mas1 activation using porcine pulmonary arteries, measured AngII/Ang-(1-7) levels in human PAH and conducted a phase IIa, open-label pilot study of a single infusion of rhACE2 (GSK2586881, 0.2 or 0.4 mg·kg intravenously).Superoxide dismutase 2 (SOD2) and inflammatory gene expression were identified as markers of Mas1 activation. After confirming reduced plasma ACE2 activity in human PAH, five patients were enrolled in the trial. GSK2586881 was well tolerated with significant improvement in cardiac output and pulmonary vascular resistance. GSK2586881 infusion was associated with reduced plasma markers of inflammation within 2-4 h and increased SOD2 plasma protein at 2 weeks.PAH is characterised by reduced ACE2 activity. Augmentation of ACE2 in a pilot study was well tolerated, associated with improved pulmonary haemodynamics and reduced markers of oxidant and inflammatory mediators. Targeting this pathway may be beneficial in human PAH.
Copyright ©ERS 2018.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Introduction to Metals in Biology 2018: Copper homeostasis and utilization in redox enzymes.
Guengerich FP
(2018) J Biol Chem 293: 4603-4605
MeSH Terms: Animals, Copper, Electron Transport Complex IV, Humans, Superoxide Dismutase
Show Abstract · Added March 14, 2018
This 11th Thematic Metals in Biology Thematic Series deals with copper, a transition metal with a prominent role in biochemistry. Copper is a very versatile element, and both deficiencies and excesses can be problematic. The five Minireviews in this series deal with several aspects of copper homeostasis in microorganisms and mammals and the role of this metal in two enzymes, copper-only superoxide dismutase and cytochrome oxidase.
© 2018 Guengerich.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension.
Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, Fessel JP, Gamboa JL, Harrison DG, Dikalov SI
(2017) Circ Res 121: 564-574
MeSH Terms: Acetylation, Animals, Cells, Cultured, Humans, Hypertension, Mice, Mice, Inbred C57BL, Mice, Knockout, Oxidative Stress, Sirtuin 3, Superoxide Dismutase
Show Abstract · Added March 14, 2018
RATIONALE - Clinical studies have shown that Sirt3 (Sirtuin 3) expression declines by 40% by 65 years of age paralleling the increased incidence of hypertension and metabolic conditions further inactivate Sirt3 because of increased NADH (nicotinamide adenine dinucleotide, reduced form) and acetyl-CoA levels. Sirt3 impairment reduces the activity of a key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2) because of hyperacetylation.
OBJECTIVE - In this study, we examined whether the loss of Sirt3 activity increases vascular oxidative stress because of SOD2 hyperacetylation and promotes endothelial dysfunction and hypertension.
METHODS AND RESULTS - Hypertension was markedly increased in Sirt3-knockout (Sirt3) and SOD2-depleted (SOD2) mice in response to low dose of angiotensin II (0.3 mg/kg per day) compared with wild-type C57Bl/6J mice. Sirt3 depletion increased SOD2 acetylation, elevated mitochondrial O, and diminished endothelial nitric oxide. Angiotensin II-induced hypertension was associated with Sirt3 S-glutathionylation, acetylation of vascular SOD2, and reduced SOD2 activity. Scavenging of mitochondrial HO in mCAT mice expressing mitochondria-targeted catalase prevented Sirt3 and SOD2 impairment and attenuated hypertension. Treatment of mice after onset of hypertension with a mitochondria-targeted HO scavenger, mitochondria-targeted hydrogen peroxide scavenger ebselen, reduced Sirt3 S-glutathionylation, diminished SOD2 acetylation, and reduced blood pressure in wild-type but not in Sirt3 mice, whereas an SOD2 mimetic, (2-[2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino]-2-oxoethyl) triphenylphosphonium (mitoTEMPO), reduced blood pressure and improved vasorelaxation both in Sirt3 and wild-type mice. SOD2 acetylation had an inverse correlation with SOD2 activity and a direct correlation with the severity of hypertension. Analysis of human subjects with essential hypertension showed 2.6-fold increase in SOD2 acetylation and 1.4-fold decrease in Sirt3 levels, whereas SOD2 expression was not affected.
CONCLUSIONS - Our data suggest that diminished Sirt3 expression and redox inactivation of Sirt3 lead to SOD2 inactivation and contributes to the pathogenesis of hypertension.
© 2017 American Heart Association, Inc.
0 Communities
3 Members
0 Resources
11 MeSH Terms
A Superoxide Dismutase Capable of Functioning with Iron or Manganese Promotes the Resistance of Staphylococcus aureus to Calprotectin and Nutritional Immunity.
Garcia YM, Barwinska-Sendra A, Tarrant E, Skaar EP, Waldron KJ, Kehl-Fie TE
(2017) PLoS Pathog 13: e1006125
MeSH Terms: Animals, Chromatography, Ion Exchange, Disease Models, Animal, Iron, Leukocyte L1 Antigen Complex, Manganese, Mass Spectrometry, Mice, Mice, Inbred C57BL, Polymerase Chain Reaction, Staphylococcal Infections, Staphylococcus aureus, Superoxide Dismutase
Show Abstract · Added April 8, 2017
Staphylococcus aureus is a devastating mammalian pathogen for which the development of new therapeutic approaches is urgently needed due to the prevalence of antibiotic resistance. During infection pathogens must overcome the dual threats of host-imposed manganese starvation, termed nutritional immunity, and the oxidative burst of immune cells. These defenses function synergistically, as host-imposed manganese starvation reduces activity of the manganese-dependent enzyme superoxide dismutase (SOD). S. aureus expresses two SODs, denoted SodA and SodM. While all staphylococci possess SodA, SodM is unique to S. aureus, but the advantage that S. aureus gains by expressing two apparently manganese-dependent SODs is unknown. Surprisingly, loss of both SODs renders S. aureus more sensitive to host-imposed manganese starvation, suggesting a role for these proteins in overcoming nutritional immunity. In this study, we have elucidated the respective contributions of SodA and SodM to resisting oxidative stress and nutritional immunity. These analyses revealed that SodA is important for resisting oxidative stress and for disease development when manganese is abundant, while SodM is important under manganese-deplete conditions. In vitro analysis demonstrated that SodA is strictly manganese-dependent whereas SodM is in fact cambialistic, possessing equal enzymatic activity when loaded with manganese or iron. Cumulatively, these studies provide a mechanistic rationale for the acquisition of a second superoxide dismutase by S. aureus and demonstrate an important contribution of cambialistic SODs to bacterial pathogenesis. Furthermore, they also suggest a new mechanism for resisting manganese starvation, namely populating manganese-utilizing enzymes with iron.
0 Communities
1 Members
0 Resources
13 MeSH Terms
LRRC8A channels support TNFα-induced superoxide production by Nox1 which is required for receptor endocytosis.
Choi H, Ettinger N, Rohrbough J, Dikalova A, Nguyen HN, Lamb FS
(2016) Free Radic Biol Med 101: 413-423
MeSH Terms: Cell Line, Cyclopentanes, Endocytosis, Gene Expression Regulation, HEK293 Cells, Humans, Indans, JNK Mitogen-Activated Protein Kinases, Membrane Proteins, Myocytes, Smooth Muscle, NADPH Oxidase 1, NF-kappa B, Phosphorylation, Protein Subunits, RNA, Small Interfering, Receptors, Tumor Necrosis Factor, Type I, Signal Transduction, Superoxide Dismutase, Superoxides, Tumor Necrosis Factor-alpha, Vascular Cell Adhesion Molecule-1
Show Abstract · Added March 26, 2019
Leucine Rich Repeat Containing 8A (LRRC8A) is a required component of volume-regulated anion channels (VRACs). In vascular smooth muscle cells, tumor necrosis factor-α (TNFα) activates VRAC via type 1 TNFα receptors (TNFR1), and this requires superoxide (O) production by NADPH oxidase 1 (Nox1). VRAC inhibitors suppress the inflammatory response to TNFα by an unknown mechanism. We hypothesized that LRRC8A directly supports Nox1 activity, providing a link between VRAC current and inflammatory signaling. VRAC inhibition by 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) impaired NF-κB activation by TNFα. LRRC8A siRNA reduced the magnitude of VRAC and inhibited TNFα-induced NF-κB activation, iNOS and VCAM expression, and proliferation of VSMCs. Signaling steps disrupted by both siLRRC8A and DCPIB included; extracellular O production by Nox1, c-Jun N-terminal kinase (JNK) phosphorylation and endocytosis of TNFR1. Extracellular superoxide dismutase, but not catalase, selectively inhibited TNFR1 endocytosis and JNK phosphorylation. Thus, O is the critical extracellular oxidant for TNFR signal transduction. Reducing JNK expression (siJNK) increased extracellular O suggesting that JNK provides important negative feedback regulation to Nox1 at the plasma membrane. LRRC8A co-localized by immunostaining, and co-immunoprecipitated with, both Nox1 and its p22phox subunit. LRRC8A is a component of the Nox1 signaling complex. It is required for extracellular O production, which is in turn essential for TNFR1 endocytosis. These data are the first to provide a molecular mechanism for the potent anti-proliferative and anti-inflammatory effects of VRAC inhibition.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Contribution of mitochondrial oxidative stress to hypertension.
Dikalov SI, Dikalova AE
(2016) Curr Opin Nephrol Hypertens 25: 73-80
MeSH Terms: Aging, Angiotensin II, Animals, Caloric Restriction, Humans, Hypertension, Mitochondria, Motor Activity, Oxidative Stress, Reactive Oxygen Species, Sirtuin 3, Smoking, Superoxide Dismutase
Show Abstract · Added February 17, 2016
PURPOSE OF REVIEW - In 1954 Harman proposed the free radical theory of aging, and in 1972 he suggested that mitochondria are both the source and the victim of toxic free radicals. Interestingly, hypertension is an age-associated disease and clinical data show that by age 70, 70% of the population has hypertension and this is accompanied by oxidative stress. Antioxidant therapy, however, is not currently available and common antioxidants such as ascorbate and vitamin E are ineffective in preventing hypertension. The present review focuses on the molecular mechanisms of mitochondrial oxidative stress and the therapeutic potential of targeting mitochondria in hypertension.
RECENT FINDINGS - Over the past several years, we have shown that the mitochondria become dysfunctional in hypertension and have defined a novel role of mitochondrial superoxide radicals in this disease. We have shown that genetic manipulation of mitochondrial antioxidant enzyme superoxide dismutase affects blood pressure, and have developed mitochondria-targeted therapies such as mitochondrial superoxide dismutase mimetics that effectively lower blood pressure. However, the specific mechanism of mitochondrial oxidative stress in hypertension remains unclear. Recent animal and clinical studies have demonstrated several hormonal, metabolic, inflammatory, and environmental pathways contributing to mitochondrial dysfunction and oxidative stress.
SUMMARY - Nutritional supplements, calorie restriction, and life style change are the most effective preventive strategies to improve mitochondrial function and reduce mitochondrial oxidative stress. Aging associated mitochondrial dysfunction, however, reduces the efficacy of these strategies. Therefore, we propose that new classes of mitochondria-targeted antioxidants can provide a high therapeutic potential to improve endothelial function and reduce hypertension.
0 Communities
1 Members
0 Resources
13 MeSH Terms
5'-O-Alkylpyridoxamines: Lipophilic Analogues of Pyridoxamine Are Potent Scavengers of 1,2-Dicarbonyls.
Amarnath V, Amarnath K, Avance J, Stec DF, Voziyan P
(2015) Chem Res Toxicol 28: 1469-75
MeSH Terms: Biocatalysis, Electron Spin Resonance Spectroscopy, Free Radical Scavengers, Free Radicals, Glucose, Horseradish Peroxidase, Hydrophobic and Hydrophilic Interactions, Membrane Proteins, Molecular Conformation, Muramidase, Pyridoxamine, Pyruvaldehyde, Spectrophotometry, Ultraviolet, Superoxide Dismutase
Show Abstract · Added June 9, 2017
Pyridoxamine (PM) is a prospective drug for the treatment of diabetic complications. In order to make zwitterionic PM more lipophilic and improve its tissue distribution, PM derivatives containing medium length alkyl groups on the hydroxymethyl side chain were prepared. The synthesis of these alkylpyridoxamines (alkyl-PMs) starting from pyridoxine offers high yields and is amenable to bulk preparations. Interestingly, alkyl-PMs were found to react with methylglyoxal (MGO), a major toxic product of glucose metabolism and autoxidation, several orders of magnitude faster than PM. This suggests the formation of nonionic pyrido-1,3-oxazine as the key step in the reaction of PM with MGO. Since the primary target of MGO in proteins is the guanidine side chain of arginine, alkyl-PMs were shown to be more effective than PM in reducing the modification of N-α-benzoylarginine by MGO. Alkyl-PMs in the presence of MGO also protected the enzymatic activity of lysozyme that contains several arginine residues next to its active site. Alkyl-PMs can be expected to trap MGO and other toxic 1,2-carbonyl compounds more effectively than PM, especially in lipophilic tissue environments, thus protecting macromolecules from functional damage. This suggests potential therapeutic uses for alkyl-PMs in diabetes and other diseases characterized by the elevated levels of toxic dicarbonyl compounds.
1 Communities
1 Members
0 Resources
14 MeSH Terms
Cellular oxidative stress response mediates radiosensitivity in Fus1-deficient mice.
Yazlovitskaya EM, Voziyan PA, Manavalan T, Yarbrough WG, Ivanova AV
(2015) Cell Death Dis 6: e1652
MeSH Terms: Animals, Cytochromes c, DNA Damage, Female, Mice, Mice, Knockout, Oxidative Stress, Radiation Tolerance, STAT3 Transcription Factor, Superoxide Dismutase, Tumor Suppressor Proteins
Show Abstract · Added June 9, 2017
Mechanism of radiosensitivity of normal tissues, a key factor in determining the toxic side effects of cancer radiotherapy, is not fully understood. We recently demonstrated that deficiency of mitochondrial tumor suppressor, Fus1, increases radiosensitivity at the organismal, tissue and cellular levels. Since Fus1-deficient mice and cells exhibit high levels of oxidative stress, we hypothesized that dysregulation of cellular antioxidant defenses may contribute to the increased radiosensitivity. To address this potential mechanism, we treated the Fus1 KO mice with an inhibitor of pathogenic oxidative reactions, pyridoxamine (PM). Treatment with PM ameliorated IR-induced damage to GI epithelium of Fus1 KO mice and significantly increased the survival of irradiated mice. In cultured Fus1 KO epithelial cells, IR-induced oxidative stress was enhanced because of inadequate cellular antioxidant defenses, such as low levels and/or activities of cytochrome C, Sod 2 and STAT3. This resulted in dysregulation of IR-induced DNA-damage response and DNA synthesis. Treatment of Fus1 KO cells with PM or Sod 2 mimetic Tempol normalized the oxidative stress response, thus compensating to a significant degree for inadequate antioxidant response. Our findings using Fus1 KO radiosensitive mice suggest that radiosensitivity is mediated via dysregulation of antioxidant response and defective redox homeostasis.
1 Communities
2 Members
0 Resources
11 MeSH Terms
Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension.
Nozik-Grayck E, Woods C, Taylor JM, Benninger RK, Johnson RD, Villegas LR, Stenmark KR, Harrison DG, Majka SM, Irwin D, Farrow KN
(2014) Am J Physiol Lung Cell Mol Physiol 307: L868-76
MeSH Terms: Animals, Blood Pressure, Cyclic GMP, Cyclic Nucleotide Phosphodiesterases, Type 5, Estrogen Antagonists, GTP Cyclohydrolase, Guanylate Cyclase, Hypertension, Pulmonary, Hypertrophy, Right Ventricular, Hypoxia, Lung, Mice, Mice, Knockout, Nitric Oxide Synthase Type III, Pulmonary Artery, Receptors, Cytoplasmic and Nuclear, Signal Transduction, Soluble Guanylyl Cyclase, Superoxide Dismutase, Tamoxifen
Show Abstract · Added March 31, 2015
Excess superoxide has been implicated in pulmonary hypertension (PH). We previously found lung overexpression of the antioxidant extracellular superoxide dismutase (EC-SOD) attenuates PH and pulmonary artery (PA) remodeling. Although comprising a small fraction of total SOD activity in most tissues, EC-SOD is abundant in arteries. We hypothesize that the selective loss of vascular EC-SOD promotes hypoxia-induced PH through redox-sensitive signaling pathways. EC-SOD(loxp/loxp) × Tg(cre/SMMHC) mice (SMC EC-SOD KO) received tamoxifen to conditionally deplete smooth muscle cell (SMC)-derived EC-SOD. Mice were exposed to hypobaric hypoxia for 35 days, and PH was assessed by right ventricular systolic pressure measurements and right ventricle hypertrophy. Vascular remodeling was evaluated by morphometric analysis and two-photon microscopy for collagen. We examined cGMP content and soluble guanylate cyclase expression and activity in lung, lung phosphodiesterase 5 (PDE5) expression and activity, and expression of endothelial nitric oxide synthase and GTP cyclohydrolase-1 (GTPCH-1), the rate-limiting enzyme in tetrahydrobiopterin synthesis. Knockout of SMC EC-SOD selectively decreased PA EC-SOD without altering total lung EC-SOD. PH and vascular remodeling induced by chronic hypoxia was augmented in SMC EC-SOD KO. Depletion of SMC EC-SOD did not impact content or activity of lung soluble guanylate cyclase or PDE5, yet it blunted the hypoxia-induced increase in cGMP. Although total eNOS was not altered, active eNOS and GTPCH-1 decreased with hypoxia only in SMC EC-SOD KO. We conclude that the localized loss of PA EC-SOD augments chronic hypoxic PH. In addition to oxidative inactivation of NO, deletion of EC-SOD seems to reduce eNOS activity, further compromising pulmonary vascular function.
Copyright © 2014 the American Physiological Society.
1 Communities
2 Members
0 Resources
20 MeSH Terms
Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice.
Kang L, Dai C, Lustig ME, Bonner JS, Mayes WH, Mokshagundam S, James FD, Thompson CS, Lin CT, Perry CG, Anderson EJ, Neufer PD, Wasserman DH, Powers AC
(2014) Diabetes 63: 3699-710
MeSH Terms: Animals, Blotting, Western, Diet, High-Fat, Glucose, Insulin, Mice, Mice, Mutant Strains, Muscle, Skeletal, Oxidative Stress, Reactive Oxygen Species, Reverse Transcriptase Polymerase Chain Reaction, Superoxide Dismutase, Superoxides
Show Abstract · Added February 15, 2015
Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2(+/+)) and heterozygous knockout mice (sod2(+/-)) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2(+/-) and sod2(+/+) but was markedly decreased in HF-fed sod2(+/-). Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2(+/-) was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2(+/-) and sod2(+/+) of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2(+/-) was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2(+/-) support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action.
© 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
0 Communities
2 Members
0 Resources
13 MeSH Terms