Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 6 of 6

Publication Record

Connections

Isotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells.
Albertolle ME, Glass SM, Trefts E, Guengerich FP
(2019) J Biol Chem 294: 6522-6530
MeSH Terms: Animals, Benzothiadiazines, Cysteine, Hepatocytes, Isotope Labeling, Male, Mice, Oxidation-Reduction, Sulfenic Acids
Show Abstract · Added March 26, 2019
Oxidative modifications of cysteine residues are an important component in signaling pathways, enzymatic regulation, and redox homeostasis. Current direct and indirect methods detect specific modifications and a general binary population of "free" or "oxidized" cysteines, respectively. In an effort to combine both direct and indirect detection strategies, here we developed a method that we designate isotopic tagging of oxidized and reduced cysteines (iTORC). This method uses synthetic molecules for rapid isotopic coding of sulfenic acids, reduced cysteines, and disulfides in cells. Our approach utilizes isotopically distinct benzothiazine and halogenated benzothiazine probes to sequentially alkylate sulfenic acids and then free thiols and, finally, after a reduction step, cysteines oxidized to disulfides or other phosphine-reducible states. We ascertained that the iodinated benzothiazine probe has reduced cross-reactivity toward primary amines and is highly reactive with the cysteine of GSH, with a calculated rate constant of 2 × 10 m s (pH 8.0, 23 °C) ( 10-20 times faster than ethylmaleimide). We applied iTORC to a mouse hepatocyte lysate to identify known sulfenylated and disulfide-bonded proteins, including elongation factor 1-α1 and mouse serum albumin, and found that iTORC reliably detected their expected oxidation status. This method can be easily employed to study the effects of oxidants on recombinant proteins and cell and tissue extracts, and the efficiencies of the alkylating agents enable completion of all three labeling steps within 2 h. In summary, we demonstrate here that halogenated benzothiazine-based alkylating agents can be utilized to rapidly measure the cellular thiol status in cells.
© 2019 Albertolle et al.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Glutamine-451 Confers Sensitivity to Oxidative Inhibition and Heme-Thiolate Sulfenylation of Cytochrome P450 4B1.
Albertolle ME, Song HD, Wilkey CJ, Segrest JP, Guengerich FP
(2019) Chem Res Toxicol 32: 484-492
MeSH Terms: Animals, Aryl Hydrocarbon Hydroxylases, Glutamine, Heme, Molecular Dynamics Simulation, Mutagenesis, Site-Directed, Oxidation-Reduction, Rabbits, Sulfenic Acids, Sulfhydryl Compounds
Show Abstract · Added March 26, 2019
Human cytochrome P450 (P450) family 4 enzymes are involved in the metabolism of fatty acids and the bioactivation of carcinogenic arylamines and toxic natural products, e.g., 4-ipomeanol. These and other drug-metabolizing P450s are redox sensitive, showing a loss of activity resulting from preincubation with HO and recovery with mild reducing agents [Albertolle, M. W., et al. (2017) J. Biol. Chem. 292, 11230-11242]. The inhibition is due to sulfenylation of the heme-thiolate ligand, as determined by chemopreoteomics and spectroscopy. This phenomenon may have implications for chemical toxicity and observed disease-drug interactions, in which the decreased metabolism of P450 substrates occurs in patients with inflammatory diseases (e.g., influenza and autoimmunity). Human P450 1A2 was determined to be redox insensitive. To determine the mechanism underlying the differential redox sensitivity, molecular dynamics (MD) simulations were employed using the crystal structure of rabbit P450 4B1 (Protein Data Bank entry 5T6Q ). In simulating either the thiolate (Cys-S) or the sulfenic acid (Cys-SOH) at the heme ligation site, MD revealed Gln-451 in either an "open" or "closed" conformation, respectively, between the cytosol and heme-thiolate cysteine. Mutation to either an isosteric leucine (Q451L) or glutamate (Q451E) abrogated the redox sensitivity, suggesting that this "open" conformation allows for reduction of the sulfenic acid and religation of the thiolate to the heme iron. In summary, MD simulations suggest that Gln-451 in P450 4B1 adopts conformations that may stabilize and protect the heme-thiolate sulfenic acid; mutating this residue destabilizes the interaction, producing a redox insensitive enzyme.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Sulfenylation of Human Liver and Kidney Microsomal Cytochromes P450 and Other Drug-Metabolizing Enzymes as a Response to Redox Alteration.
Albertolle ME, Phan TTN, Pozzi A, Guengerich FP
(2018) Mol Cell Proteomics 17: 889-900
MeSH Terms: Animals, Biocatalysis, Cysteine, Cytochrome P-450 Enzyme System, Humans, Hydrogen Peroxide, Kidney, Mice, Transgenic, Microsomes, Liver, Oxidation-Reduction, Pharmaceutical Preparations, Recombinant Proteins, Staining and Labeling, Sulfenic Acids, Sulfhydryl Compounds
Show Abstract · Added March 14, 2018
The lumen of the endoplasmic reticulum (ER) provides an oxidizing environment to aid in the formation of disulfide bonds, which is tightly regulated by both antioxidant proteins and small molecules. On the cytoplasmic side of the ER, cytochrome P450 (P450) proteins have been identified as a superfamily of enzymes that are important in the formation of endogenous chemicals as well as in the detoxication of xenobiotics. Our previous report described oxidative inhibition of P450 Family 4 enzymes via oxidation of the heme-thiolate cysteine to a sulfenic acid (-SOH) (Albertolle, M. E. (2017) 292, 11230-11242). Further proteomic analyses of murine kidney and liver microsomes led to the finding that a number of other drug-metabolizing enzymes located in the ER are also redox-regulated in this manner. We expanded our analysis of sulfenylated enzymes to human liver and kidney microsomes. Evaluation of the sulfenylation, catalytic activity, and spectral properties of P450s 1A2, 2C8, 2D6, and 3A4 led to the identification of two classes of redox sensitivity in P450 enzymes: heme-thiolate-sensitive and thiol-insensitive. These findings provide evidence for a mammalian P450 regulatory mechanism, which may also be relevant to other drug-metabolizing enzymes. (Data are available via ProteomeXchange with identifier PXD007913.).
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Global, in situ, site-specific analysis of protein S-sulfenylation.
Yang J, Gupta V, Tallman KA, Porter NA, Carroll KS, Liebler DC
(2015) Nat Protoc 10: 1022-37
MeSH Terms: Cell Line, Humans, Oxidation-Reduction, Protein Processing, Post-Translational, Proteins, Proteomics, Sulfenic Acids, Tandem Mass Spectrometry
Show Abstract · Added February 15, 2016
Protein S-sulfenylation is the reversible oxidative modification of cysteine thiol groups to form cysteine S-sulfenic acids. Mapping the specific sites of protein S-sulfenylation onto complex proteomes is crucial to understanding the molecular mechanisms controlling redox signaling and regulation. This protocol describes global, in situ, site-specific analysis of protein S-sulfenylation using sulfenic acid-specific chemical probes and mass spectrometry (MS)-based proteomics. The major steps in this protocol are as follows: (i) optimization of conditions for selective labeling of cysteine S-sulfenic acids in intact cells with the commercially available dimedone-based probe, DYn-2; (ii) tagging the modified cysteines with a functionalized biotin reagent containing a cleavable linker via Cu(I)-catalyzed azide-alkyne cycloaddition reaction; (iii) enrichment of the biotin-tagged tryptic peptides with streptavidin; (iv) liquid chromatography-tandem MS (LC-MS/MS)-based shotgun proteomics; and (v) computational data analysis. We also outline strategies for quantitative analysis of this modification in cells responding to redox perturbations and discuss special issues pertaining to experimental design of thiol redox studies. Our chemoproteomic platform should be broadly applicable to the investigation of other bio-orthogonal chemically engineered post-translational modifications. The entire analysis protocol takes ∼1 week to complete.
0 Communities
2 Members
0 Resources
8 MeSH Terms
Site-specific mapping and quantification of protein S-sulphenylation in cells.
Yang J, Gupta V, Carroll KS, Liebler DC
(2014) Nat Commun 5: 4776
MeSH Terms: Acetylation, Cell Line, Tumor, Cysteine, Epidermal Growth Factor, Epithelial Cells, Gene Expression, Humans, Hydrogen Peroxide, Hypoxia-Inducible Factor 1, alpha Subunit, Molecular Sequence Annotation, Oxidation-Reduction, Peptide Mapping, Phosphorylation, Protein Processing, Post-Translational, Sirtuins, Sulfenic Acids, Ubiquitination
Show Abstract · Added January 20, 2015
Cysteine S-sulphenylation provides redox regulation of protein functions, but the global cellular impact of this transient post-translational modification remains unexplored. We describe a chemoproteomic workflow to map and quantify over 1,000 S-sulphenylation sites on more than 700 proteins in intact cells. Quantitative analysis of human cells stimulated with hydrogen peroxide or epidermal growth factor measured hundreds of site selective redox changes. Different cysteines in the same proteins displayed dramatic differences in susceptibility to S-sulphenylation. Newly discovered S-sulphenylations provided mechanistic support for proposed cysteine redox reactions and suggested novel redox mechanisms, including S-sulphenyl-mediated redox regulation of the transcription factor HIF1A by SIRT6. S-sulphenylation is favored at solvent-exposed protein surfaces and is associated with sequence motifs that are distinct from those for other thiol modifications. S-sulphenylations affect regulators of phosphorylation, acetylation and ubiquitylation, which suggest regulatory crosstalk between redox control and signalling pathways.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins.
Nelson KJ, Klomsiri C, Codreanu SG, Soito L, Liebler DC, Rogers LC, Daniel LW, Poole LB
(2010) Methods Enzymol 473: 95-115
MeSH Terms: Animals, Biotinylation, Cyclohexanones, Humans, Mass Spectrometry, Protein Processing, Post-Translational, Proteins, Staining and Labeling, Sulfenic Acids
Show Abstract · Added March 20, 2014
Reversible thiol modification is a major component of the modulation of cell-signaling pathways by reactive oxygen species. Hydrogen peroxide, peroxynitrite, or lipid hydroperoxides are all able to oxidize cysteines to form cysteine sulfenic acids; this reactive intermediate can be directly reduced to thiol by cellular reductants such as thioredoxin or further participate in disulfide bond formation with glutathione or cysteine residues in the same or another protein. To identify the direct protein targets of cysteine modification and the conditions under which they are oxidized, a series of dimedone-based reagents linked to affinity or fluorescent tags have been developed that specifically alkylate and trap cysteine sulfenic acids. In this chapter, we provide detailed methods using one of our biotin-tagged reagents, DCP-Bio1, to identify and monitor proteins that are oxidized in vitro and in vivo. Using streptavidin-linked agarose beads, this biotin-linked reagent can be used to affinity capture labeled proteins. Stringent washing of the beads prior to elution minimizes the contamination of the enriched material with unlabeled proteins through coimmunoprecipitation or nonspecific binding. In particular, we suggest including DTT in one of the washes to remove proteins covalently linked to biotinylated proteins through a disulfide bond, except in cases where these linked proteins are of interest. We also provide methods for targeted approaches monitoring cysteine oxidation in individual proteins, global approaches to follow total cysteine oxidation in the cell, and guidelines for proteomic analyses to identify novel proteins with redox sensitive cysteines.
Copyright (c) 2010 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
9 MeSH Terms