Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 400

Publication Record

Connections

Discovery, Characterization, and Effects on Renal Fluid and Electrolyte Excretion of the Kir4.1 Potassium Channel Pore Blocker, VU0134992.
Kharade SV, Kurata H, Bender AM, Blobaum AL, Figueroa EE, Duran A, Kramer M, Days E, Vinson P, Flores D, Satlin LM, Meiler J, Weaver CD, Lindsley CW, Hopkins CR, Denton JS
(2018) Mol Pharmacol 94: 926-937
MeSH Terms: Animals, Binding Sites, Diuretics, Electrolytes, HEK293 Cells, Humans, Male, Models, Molecular, Molecular Docking Simulation, Molecular Structure, Mutagenesis, Site-Directed, Potassium Channels, Inwardly Rectifying, Rats, Small Molecule Libraries, Substrate Specificity
Show Abstract · Added April 10, 2019
The inward rectifier potassium (Kir) channel Kir4.1 () carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness. Although genetic approaches have been indispensable for establishing the importance of Kir4.1 in the normal function of these tissues, the availability of pharmacological tools for acutely manipulating the activity of Kir4.1 in genetically normal animals has been lacking. We therefore carried out a high-throughput screen of 76,575 compounds from the Vanderbilt Institute of Chemical Biology library for small-molecule modulators of Kir4.1. The most potent inhibitor identified was 2-(2-bromo-4-isopropylphenoxy)--(2,2,6,6-tetramethylpiperidin-4-yl)acetamide (VU0134992). In whole-cell patch-clamp electrophysiology experiments, VU0134992 inhibits Kir4.1 with an IC value of 0.97 M and is 9-fold selective for homomeric Kir4.1 over Kir4.1/5.1 concatemeric channels (IC = 9 M) at -120 mV. In thallium (Tl) flux assays, VU0134992 is greater than 30-fold selective for Kir4.1 over Kir1.1, Kir2.1, and Kir2.2; is weakly active toward Kir2.3, Kir6.2/SUR1, and Kir7.1; and is equally active toward Kir3.1/3.2, Kir3.1/3.4, and Kir4.2. This potency and selectivity profile is superior to Kir4.1 inhibitors amitriptyline, nortriptyline, and fluoxetine. Medicinal chemistry identified components of VU0134992 that are critical for inhibiting Kir4.1. Patch-clamp electrophysiology, molecular modeling, and site-directed mutagenesis identified pore-lining glutamate 158 and isoleucine 159 as critical residues for block of the channel. VU0134992 displayed a large free unbound fraction () in rat plasma ( = 0.213). Consistent with the known role of Kir4.1 in renal function, oral dosing of VU0134992 led to a dose-dependent diuresis, natriuresis, and kaliuresis in rats. Thus, VU0134992 represents the first in vivo active tool compound for probing the therapeutic potential of Kir4.1 as a novel diuretic target for the treatment of hypertension.
Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
0 Communities
1 Members
0 Resources
MeSH Terms
Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer.
Bhuripanyo K, Wang Y, Liu X, Zhou L, Liu R, Duong D, Zhao B, Bi Y, Zhou H, Chen G, Seyfried NT, Chazin WJ, Kiyokawa H, Yin J
(2018) Sci Adv 4: e1701393
MeSH Terms: Amino Acid Sequence, Bacteriophages, Biocatalysis, Cyclin-Dependent Kinase 4, Endoplasmic Reticulum Stress, HEK293 Cells, Humans, Mutant Proteins, Mutation, Peptides, Proteolysis, Reproducibility of Results, Signal Transduction, Substrate Specificity, Tumor Suppressor Protein p53, Tumor Suppressor Proteins, Ubiquitin, Ubiquitin-Protein Ligase Complexes, Ubiquitin-Protein Ligases, Ubiquitination
Show Abstract · Added March 24, 2018
E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct "orthogonal UB transfer (OUT)" cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine -methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Dual cyclooxygenase-fatty acid amide hydrolase inhibitor exploits novel binding interactions in the cyclooxygenase active site.
Goodman MC, Xu S, Rouzer CA, Banerjee S, Ghebreselasie K, Migliore M, Piomelli D, Marnett LJ
(2018) J Biol Chem 293: 3028-3038
MeSH Terms: Amidohydrolases, Catalytic Domain, Cyclooxygenase Inhibitors, Isoenzymes, Phenylcarbamates, Phenylpropionates, Prostaglandin-Endoperoxide Synthases, Protein Binding, Stereoisomerism, Substrate Specificity
Show Abstract · Added April 22, 2018
The cyclooxygenases COX-1 and COX-2 oxygenate arachidonic acid (AA) to prostaglandin H (PGH). COX-2 also oxygenates the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamide (AEA) to the corresponding PGH analogs. Both enzymes are targets of nonsteroidal anti-inflammatory drugs (NSAIDs), but NSAID-mediated COX inhibition is associated with gastrointestinal toxicity. One potential strategy to counter this toxicity is to also inhibit fatty acid amide hydrolase (FAAH), which hydrolyzes bioactive fatty acid ethanolamides (FAEs) into fatty acids and ethanolamine. Here, we investigated the mechanism of COX inhibition by ARN2508, an NSAID that inhibits both COXs and FAAH with high potency, target selectivity, and decreased gastrointestinal toxicity in mouse models, presumably due to its ability to increase levels of FAEs. A 2.27-Å-resolution X-ray crystal structure of the COX-2·()-ARN2508 complex reveals that ARN2508 adopts a binding pose similar to that of its parent NSAID flurbiprofen. However, ARN2508's alkyl tail is inserted deep into the top channel, an active site region not exploited by any previously reported NSAID. As for flurbiprofen, ARN2508's potency is highly dependent on the configuration of the α-methyl group. Thus, ()-ARN2508 is more potent than ()-ARN2508 for inhibition of AA oxygenation by both COXs and 2-AG oxygenation by COX-2. Also, similarly to ()-flurbiprofen, ()-ARN2508 exhibits substrate selectivity for inhibition of 2-AG oxygenation. Site-directed mutagenesis confirms the importance of insertion of the alkyl tail into the top channel for ()-ARN2508's potency and suggests a role for Ser-530 as a determinant of the inhibitor's slow rate of inhibition compared with that of ()-flurbiprofen.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Human DNA polymerase η accommodates RNA for strand extension.
Su Y, Egli M, Guengerich FP
(2017) J Biol Chem 292: 18044-18051
MeSH Terms: Base Pair Mismatch, DNA Primers, DNA Replication, DNA-Directed DNA Polymerase, Deoxyguanosine, Electrophoretic Mobility Shift Assay, Humans, Kinetics, Nucleic Acid Heteroduplexes, Nucleic Acid Hybridization, Oligodeoxyribonucleotides, Oligoribonucleotides, Pyrimidine Dimers, RNA, Recombinant Proteins, Reverse Transcription, Substrate Specificity, Transcription Elongation, Genetic
Show Abstract · Added March 14, 2018
Ribonucleotides are the natural analogs of deoxyribonucleotides, which can be misinserted by DNA polymerases, leading to the most abundant DNA lesions in genomes. During replication, DNA polymerases tolerate patches of ribonucleotides on the parental strands to different extents. The majority of human DNA polymerases have been reported to misinsert ribonucleotides into genomes. However, only PrimPol, DNA polymerase α, telomerase, and the mitochondrial human DNA polymerase (hpol) γ have been shown to tolerate an entire RNA strand. Y-family hpol η is known for translesion synthesis opposite the UV-induced DNA lesion cyclobutane pyrimidine dimer and was recently found to incorporate ribonucleotides into DNA. Here, we report that hpol η is able to bind DNA/DNA, RNA/DNA, and DNA/RNA duplexes with similar affinities. In addition, hpol η, as well as another Y-family DNA polymerase, hpol κ, accommodates RNA as one of the two strands during primer extension, mainly by inserting dNMPs opposite unmodified templates or DNA lesions, such as 8-oxo-2'-deoxyguanosine or cyclobutane pyrimidine dimer, even in the presence of an equal amount of the DNA/DNA substrate. The discovery of this RNA-accommodating ability of hpol η redefines the traditional concept of human DNA polymerases and indicates potential new functions of hpol η .
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Kinetic Deuterium Isotope Effects in Cytochrome P450 Reactions.
Guengerich FP
(2017) Methods Enzymol 596: 217-238
MeSH Terms: Biocatalysis, Cytochrome P-450 Enzyme System, Deuterium, Enzyme Assays, Humans, Hydrogen Bonding, Kinetics, Models, Chemical, Oxidation-Reduction, Substrate Specificity
Show Abstract · Added March 14, 2018
Cytochrome P450 (P450, CYP) research provides many opportunities for the application of kinetic isotope effect (KIE) strategies. P450s collectively catalyze oxidations of more substrates than any other group of enzymes, and CH bond cleavage is a major feature in a large fraction of these reactions. The presence of a significant primary deuterium KIE is evidence that hydrogen abstraction is at least partially rate-limiting in the reactions, and this appears to be the case in many P450 reactions. The first report of a KIE in (P450-linked) drug metabolism appeared in 1961 (for morphine N-demethylation), and in a number of cases, it has been possible to modulate the in vivo metabolism or toxicity of chemicals by deuterium substitution. A number of efforts are in progress to utilize deuterium substitution to alter the metabolism of drugs in an advantageous manner.
© 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates -retinol to 3,4-dehydroretinol.
Johnson KM, Phan TTN, Albertolle ME, Guengerich FP
(2017) J Biol Chem 292: 13672-13687
MeSH Terms: Biocatalysis, Cytochrome P450 Family 27, Gene Expression Profiling, Gene Expression Regulation, Enzymologic, Humans, Hydrogenation, Hydroxylation, Isoenzymes, Kinetics, Mitochondria, Molecular Structure, Organ Specificity, Oxidation-Reduction, Peptide Fragments, Proteolysis, Proteomics, Skin, Stereoisomerism, Substrate Specificity, Vitamin A
Show Abstract · Added March 14, 2018
Recently, zebrafish and human cytochrome P450 (P450) 27C1 enzymes have been shown to be retinoid 3,4-desaturases. The enzyme is unusual among mammalian P450s in that the predominant oxidation is a desaturation and in that hydroxylation represents only a minor pathway. We show by proteomic analysis that P450 27C1 is localized to human skin, with two proteins of different sizes present, one being a cleavage product of the full-length form. P450 27C1 oxidized all--retinol to 3,4-dehydroretinol, 4-hydroxy (OH) retinol, and 3-OH retinol in a 100:3:2 ratio. Neither 3-OH nor 4-OH retinol was an intermediate in desaturation. No kinetic burst was observed in the steady state; neither the rate of substrate binding nor product release was rate-limiting. Ferric P450 27C1 reduction by adrenodoxin was 3-fold faster in the presence of the substrate and was ∼5-fold faster than the overall turnover. Kinetic isotope effects of 1.5-2.3 (on / ) were observed with 3,3-, 4,4-, and 3,3,4,4-deuterated retinol. Deuteration at C-4 produced a 4-fold increase in 3-hydroxylation due to metabolic switching, with no observable effect on 4-hydroxylation. Deuteration at C-3 produced a strong kinetic isotope effect for 3-hydroxylation but not 4-hydroxylation. Analysis of the products of deuterated retinol showed a lack of scrambling of a putative allylic radical at C-3 and C-4. We conclude that the most likely catalytic mechanism begins with abstraction of a hydrogen atom from C-4 (or possibly C-3) initiating the desaturation pathway, followed by a sequential abstraction of a hydrogen atom or proton-coupled electron transfer. Adrenodoxin reduction and hydrogen abstraction both contribute to rate limitation.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Prostaglandin E glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y.
Brüser A, Zimmermann A, Crews BC, Sliwoski G, Meiler J, König GM, Kostenis E, Lede V, Marnett LJ, Schöneberg T
(2017) Sci Rep 7: 2380
MeSH Terms: Animals, Binding Sites, Cell Line, Tumor, Cyclooxygenase 2, Dinoprostone, HEK293 Cells, High-Throughput Nucleotide Sequencing, High-Throughput Screening Assays, Humans, Kinetics, Ligands, Mice, Molecular Docking Simulation, Protein Binding, Protein Conformation, alpha-Helical, Protein Conformation, beta-Strand, Protein Interaction Domains and Motifs, Purinergic Agonists, RAW 264.7 Cells, Receptors, Purinergic P2, Substrate Specificity, Thermodynamics, Transcriptome
Show Abstract · Added March 17, 2018
Cyclooxygenase-2 catalyses the biosynthesis of prostaglandins from arachidonic acid but also the biosynthesis of prostaglandin glycerol esters (PG-Gs) from 2-arachidonoylglycerol. Previous studies identified PG-Gs as signalling molecules involved in inflammation. Thus, the glyceryl ester of prostaglandin E, PGE-G, mobilizes Ca and activates protein kinase C and ERK, suggesting the involvement of a G protein-coupled receptor (GPCR). To identify the endogenous receptor for PGE-G, we performed a subtractive screening approach where mRNA from PGE-G response-positive and -negative cell lines was subjected to transcriptome-wide RNA sequencing analysis. We found several GPCRs that are only expressed in the PGE-G responder cell lines. Using a set of functional readouts in heterologous and endogenous expression systems, we identified the UDP receptor P2Y as the specific target of PGE-G. We show that PGE-G and UDP are both agonists at P2Y, but they activate the receptor with extremely different EC values of ~1 pM and ~50 nM, respectively. The identification of the PGE-G/P2Y pair uncovers the signalling mode of PG-Gs as previously under-appreciated products of cyclooxygenase-2.
0 Communities
2 Members
0 Resources
23 MeSH Terms
Both Drosophila matrix metalloproteinases have released and membrane-tethered forms but have different substrates.
LaFever KS, Wang X, Page-McCaw P, Bhave G, Page-McCaw A
(2017) Sci Rep 7: 44560
MeSH Terms: Animals, Cell Adhesion, Cell Membrane, Drosophila melanogaster, Extracellular Matrix, Matrix Metalloproteinase 1, Matrix Metalloproteinase 2, Signal Transduction, Substrate Specificity
Show Abstract · Added May 3, 2017
Matrix metalloproteinases (MMPs) are extracellular proteases that can cleave extracellular matrix and alter signaling pathways. They have been implicated in many disease states, but it has been difficult to understand the contribution of individual MMPs, as there are over 20 MMPs in vertebrates. The vertebrate MMPs have overlapping substrates, they exhibit genetic redundancy and compensation, and pharmacological inhibitors are non-specific. In contrast, there are only two MMP genes in Drosophila, DmMmp1 and DmMmp2, which makes Drosophila an attractive system to analyze the basis of MMP specificity. Previously, Drosophila MMPs have been categorized by their pericellular localization, as Mmp1 appeared to be secreted and Mmp2 appeared to be membrane-anchored, suggesting that protein localization was the critical distinction in this small MMP family. We report here that products of both genes are found at the cell surface and released into media. Additionally, we show that products of both genes contain GPI-anchors, and unexpectedly, that GPI-anchored MMPs promote cell adhesion when they are rendered inactive. Finally, by using new reagents and assays, we show that the two MMPs cleave different substrates, suggesting that this is the important distinction within this smallest MMP family.
1 Communities
1 Members
0 Resources
9 MeSH Terms
7,8-benzoflavone binding to human cytochrome P450 3A4 reveals complex fluorescence quenching, suggesting binding at multiple protein sites.
Marsch GA, Carlson BT, Guengerich FP
(2018) J Biomol Struct Dyn 36: 841-860
MeSH Terms: Benzoflavones, Binding Sites, Cytochrome P-450 CYP3A, Fluorescence, Humans, Kinetics, Ligands, Models, Chemical, Oxidation-Reduction, Protein Binding, Spectrometry, Fluorescence, Substrate Specificity
Show Abstract · Added March 14, 2018
Human cytochrome P450 (P450) 3A4 is involved in the metabolism of one-half of marketed drugs and shows cooperative interactions with some substrates and other ligands. The interaction between P450 3A4 and the known allosteric effector 7,8-benzoflavone (α-naphthoflavone, αNF) was characterized using steady-state fluorescence spectroscopy. The binding interaction of P450 3A4 and αNF effectively quenched the fluorescence of both the enzyme and ligand. The Hill Equation and Stern-Volmer fluorescence quenching models were used to evaluate binding of ligand to enzyme. P450 3A4 fluorescence was quenched by titration with αNF; at the relatively higher [αNF]/[P450 3A4] ratios in this experiment, two weaker quenching interactions were revealed (K 1.8-2.5 and 6.5 μM). A range is given for the stronger interaction since αNF quenching of P450 3A4 fluorescence changed the protein spectral profile: quenching of 315 nm emission was slightly more efficient (K 1.8 μM) than the quenching of protein fluorescence at 335 and 355 nm (K 2.5 and 2.1 μM, respectively). In the reverse titration, αNF fluorescence was quenched by P450 3A4; at the lower [αNF]/[P450 3A4] ratios here, two strong quenching interactions were revealed (K 0.048 and 1.0 μM). Thus, four binding interactions of αNF to P450 3A4 are suggested by this study, one of which may be newly recognized and which could affect studies of drug oxidations by this important enzyme.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Simple rules for passive diffusion through the nuclear pore complex.
Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ, Russel D, Wente SR, Sali A, Rout MP
(2016) J Cell Biol 215: 57-76
MeSH Terms: Biological Transport, Computer Simulation, Diffusion, Fluorescence Recovery After Photobleaching, Kinetics, Macromolecular Substances, Molecular Weight, Mutation, Nuclear Pore, Nuclear Pore Complex Proteins, Permeability, Protein Domains, Saccharomyces cerevisiae, Substrate Specificity, Thermodynamics, Time Factors
Show Abstract · Added April 14, 2017
Passive macromolecular diffusion through nuclear pore complexes (NPCs) is thought to decrease dramatically beyond a 30-60-kD size threshold. Using thousands of independent time-resolved fluorescence microscopy measurements in vivo, we show that the NPC lacks such a firm size threshold; instead, it forms a soft barrier to passive diffusion that intensifies gradually with increasing molecular mass in both the wild-type and mutant strains with various subsets of phenylalanine-glycine (FG) domains and different levels of baseline passive permeability. Brownian dynamics simulations replicate these findings and indicate that the soft barrier results from the highly dynamic FG repeat domains and the diffusing macromolecules mutually constraining and competing for available volume in the interior of the NPC, setting up entropic repulsion forces. We found that FG domains with exceptionally high net charge and low hydropathy near the cytoplasmic end of the central channel contribute more strongly to obstruction of passive diffusion than to facilitated transport, revealing a compartmentalized functional arrangement within the NPC.
© 2016 Timney et al.
0 Communities
1 Members
0 Resources
16 MeSH Terms