Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 153

Publication Record

Connections

Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening.
Marcus DJ, Bedse G, Gaulden AD, Ryan JD, Kondev V, Winters ND, Rosas-Vidal LE, Altemus M, Mackie K, Lee FS, Delpire E, Patel S
(2020) Neuron 105: 1062-1076.e6
MeSH Terms: Animals, Anxiety, Arachidonic Acids, Basolateral Nuclear Complex, Endocannabinoids, Glutamic Acid, Glycerides, Male, Mice, Neural Pathways, Prefrontal Cortex, Restraint, Physical, Stress, Psychological, Synaptic Transmission
Show Abstract · Added March 3, 2020
Functional coupling between the amygdala and the dorsomedial prefrontal cortex (dmPFC) has been implicated in the generation of negative affective states; however, the mechanisms by which stress increases amygdala-dmPFC synaptic strength and generates anxiety-like behaviors are not well understood. Here, we show that the mouse basolateral amygdala (BLA)-prelimbic prefrontal cortex (plPFC) circuit is engaged by stress and activation of this pathway in anxiogenic. Furthermore, we demonstrate that acute stress exposure leads to a lasting increase in synaptic strength within a reciprocal BLA-plPFC-BLA subcircuit. Importantly, we identify 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling as a key mechanism limiting glutamate release at BLA-plPFC synapses and the functional collapse of multimodal 2-AG signaling as a molecular mechanism leading to persistent circuit-specific synaptic strengthening and anxiety-like behaviors after stress exposure. These data suggest that circuit-specific impairment in 2-AG signaling could facilitate functional coupling between the BLA and plPFC and the translation of environmental stress to affective pathology.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Cerebral blood flow in 5- to 8-month-olds: Regional tissue maturity is associated with infant affect.
Catalina Camacho M, King LS, Ojha A, Garcia CM, Sisk LM, Cichocki AC, Humphreys KL, Gotlib IH
(2020) Dev Sci 23: e12928
MeSH Terms: Brain, Cerebrovascular Circulation, Emotions, Female, Humans, Infant, Magnetic Resonance Imaging, Male, Mothers, Prefrontal Cortex, Stress, Psychological, Temperament
Show Abstract · Added March 3, 2020
Infancy is marked by rapid neural and emotional development. The relation between brain function and emotion in infancy, however, is not well understood. Methods for measuring brain function predominantly rely on the BOLD signal; however, interpretation of the BOLD signal in infancy is challenging because the neuronal-hemodynamic relation is immature. Regional cerebral blood flow (rCBF) provides a context for the infant BOLD signal and can yield insight into the developmental maturity of brain regions that may support affective behaviors. This study aims to elucidate the relations among rCBF, age, and emotion in infancy. One hundred and seven mothers reported their infants' (infant age M ± SD = 6.14 ± 0.51 months) temperament. A subsample of infants completed MRI scans, 38 of whom produced usable perfusion MRI during natural sleep to quantify rCBF. Mother-infant dyads completed the repeated Still-Face Paradigm, from which infant affect reactivity and recovery to stress were quantified. We tested associations of infant age at scan, temperament factor scores, and observed affect reactivity and recovery with voxel-wise rCBF. Infant age was positively associated with CBF in nearly all voxels, with peaks located in sensory cortices and the ventral prefrontal cortex, supporting the formulation that rCBF is an indicator of tissue maturity. Temperamental Negative Affect and recovery of positive affect following a stressor were positively associated with rCBF in several cortical and subcortical limbic regions, including the orbitofrontal cortex and inferior frontal gyrus. This finding yields insight into the nature of affective neurodevelopment during infancy. Specifically, infants with relatively increased prefrontal cortex maturity may evidence a disposition toward greater negative affect and negative reactivity in their daily lives yet show better recovery of positive affect following a social stressor.
© 2019 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Nod-like receptors are critical for gut-brain axis signalling in mice.
Pusceddu MM, Barboza M, Keogh CE, Schneider M, Stokes P, Sladek JA, Kim HJD, Torres-Fuentes C, Goldfild LR, Gillis SE, Brust-Mascher I, Rabasa G, Wong KA, Lebrilla C, Byndloss MX, Maisonneuve C, Bäumler AJ, Philpott DJ, Ferrero RL, Barrett KE, Reardon C, Gareau MG
(2019) J Physiol 597: 5777-5797
MeSH Terms: Animals, Anxiety, Brain, Cells, Cultured, Cognition, Female, Hypothalamo-Hypophyseal System, Intestinal Absorption, Intestinal Mucosa, Male, Mice, Mice, Inbred C57BL, Neurogenesis, Nod1 Signaling Adaptor Protein, Nod2 Signaling Adaptor Protein, Serotonin, Stress, Psychological, Synaptic Transmission
Show Abstract · Added March 30, 2020
KEY POINTS - •Nucleotide binding oligomerization domain (Nod)-like receptors regulate cognition, anxiety and hypothalamic-pituitary-adrenal axis activation. •Nod-like receptors regulate central and peripheral serotonergic biology. •Nod-like receptors are important for maintenance of gastrointestinal physiology. •Intestinal epithelial cell expression of Nod1 receptors regulate behaviour.
ABSTRACT - Gut-brain axis signalling is critical for maintaining health and homeostasis. Stressful life events can impact gut-brain signalling, leading to altered mood, cognition and intestinal dysfunction. In the present study, we identified nucleotide binding oligomerization domain (Nod)-like receptors (NLR), Nod1 and Nod2, as novel regulators for gut-brain signalling. NLR are innate immune pattern recognition receptors expressed in the gut and brain, and are important in the regulation of gastrointestinal physiology. We found that mice deficient in both Nod1 and Nod2 (NodDKO) demonstrate signs of stress-induced anxiety, cognitive impairment and depression in the context of a hyperactive hypothalamic-pituitary-adrenal axis. These deficits were coupled with impairments in the serotonergic pathway in the brain, decreased hippocampal cell proliferation and immature neurons, as well as reduced neural activation. In addition, NodDKO mice had increased gastrointestinal permeability and altered serotonin signalling in the gut following exposure to acute stress. Administration of the selective serotonin reuptake inhibitor, fluoxetine, abrogated behavioural impairments and restored serotonin signalling. We also identified that intestinal epithelial cell-specific deletion of Nod1 (VilCre Nod1 ), but not Nod2, increased susceptibility to stress-induced anxiety-like behaviour and cognitive impairment following exposure to stress. Together, these data suggest that intestinal epithelial NLR are novel modulators of gut-brain communication and may serve as potential novel therapeutic targets for the treatment of gut-brain disorders.
© 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Disruption of Neural Homeostasis as a Model of Relapse and Recurrence in Late-Life Depression.
Andreescu C, Ajilore O, Aizenstein HJ, Albert K, Butters MA, Landman BA, Karim HT, Krafty R, Taylor WD
(2019) Am J Geriatr Psychiatry 27: 1316-1330
MeSH Terms: Aged, Allostasis, Autonomic Nervous System, Brain, Circadian Rhythm, Cognitive Dysfunction, Depressive Disorder, Major, Homeostasis, Humans, Hypothalamo-Hypophyseal System, Models, Neurological, Models, Psychological, Neural Pathways, Pituitary-Adrenal System, Recurrence, Stress, Psychological
Show Abstract · Added March 3, 2020
The significant public health burden associated with late-life depression (LLD) is magnified by the high rates of recurrence. In this manuscript, we review what is known about recurrence risk factors, conceptualize recurrence within a model of homeostatic disequilibrium, and discuss the potential significance and challenges of new research into LLD recurrence. The proposed model is anchored in the allostatic load theory of stress. We review the allostatic response characterized by neural changes in network function and connectivity and physiologic changes in the hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system, and circadian rhythm. We discuss the role of neural networks' instability following treatment response as a source of downstream disequilibrium, triggering and/or amplifying abnormal stress response, cognitive dysfunction and behavioral changes, ultimately precipitating a full-blown recurrent episode of depression. We propose strategies to identify and capture early change points that signal recurrence risk through mobile technology to collect ecologically measured symptoms, accompanied by automated algorithms that monitor for state shifts (persistent worsening) and variance shifts (increased variability) relative to a patient's baseline. Identifying such change points in relevant sensor data could potentially provide an automated tool that could alert clinicians to at-risk individuals or relevant symptom changes even in a large practice.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Understanding mindfulness, one moment at a time: an introduction to the special issue.
Bernstein A, Vago DR, Barnhofer T
(2019) Curr Opin Psychol 28: vi-x
MeSH Terms: Awareness, Humans, Mind-Body Therapies, Mindfulness, Stress, Psychological
Added January 4, 2020
0 Communities
1 Members
0 Resources
5 MeSH Terms
Irritability and brain volume in adolescents: cross-sectional and longitudinal associations.
Dennis EL, Humphreys KL, King LS, Thompson PM, Gotlib IH
(2019) Soc Cogn Affect Neurosci 14: 687-698
MeSH Terms: Adolescent, Brain, Cerebral Cortex, Child, Cross-Sectional Studies, Female, Humans, Irritable Mood, Longitudinal Studies, Magnetic Resonance Imaging, Male, Stress, Psychological, Young Adult
Show Abstract · Added March 3, 2020
Irritability is garnering increasing attention in psychiatric research as a transdiagnostic marker of both internalizing and externalizing disorders. These disorders often emerge during adolescence, highlighting the need to examine changes in the brain and in psychological functioning during this developmental period. Adolescents were recruited for a longitudinal study examining the effects of early life stress on the development of psychopathology. The 151 adolescents (73 M/78 F, average age = 11.5 years, standard deviation = 1.1) were scanned with a T1-weighted MRI sequence and parents completed reports of adolescent irritability using the Affective Reactivity Index. Of these 151 adolescents, 94 (46 M/48 F) returned for a second session (average interval = 1.9 years, SD = 0.4). We used tensor-based morphometry to examine cross-sectional and longitudinal associations between irritability and regional brain volume. Irritability was associated with brain volume across a number of regions. More irritable individuals had larger hippocampi, insula, medial orbitofrontal cortex and cingulum/cingulate cortex and smaller putamen and internal capsule. Across the brain, more irritable individuals also had larger volume and less volume contraction in a number of areas that typically decrease in volume over the developmental period studied here, suggesting delayed maturation. These structural changes may increase adolescents' vulnerability for internalizing and externalizing disorders.
© The Author(s) 2019. Published by Oxford University Press.
0 Communities
1 Members
0 Resources
MeSH Terms
Early life stress, cortisol, frontolimbic connectivity, and depressive symptoms during puberty.
Kircanski K, Sisk LM, Ho TC, Humphreys KL, King LS, Colich NL, Ordaz SJ, Gotlib IH
(2019) Dev Psychopathol 31: 1011-1022
MeSH Terms: Adolescent, Depression, Emotions, Female, Frontal Lobe, Humans, Hydrocortisone, Hypothalamo-Hypophyseal System, Limbic System, Male, Nerve Net, Pituitary-Adrenal System, Puberty, Saliva, Stress, Psychological, White Matter
Show Abstract · Added March 3, 2020
Early life stress (ELS) is a risk factor for the development of depression in adolescence; the mediating neurobiological mechanisms, however, are unknown. In this study, we examined in early pubertal youth the associations among ELS, cortisol stress responsivity, and white matter microstructure of the uncinate fasciculus and the fornix, two key frontolimbic tracts; we also tested whether and how these variables predicted depressive symptoms in later puberty. A total of 208 participants (117 females; M age = 11.37 years; M Tanner stage = 2.03) provided data across two or more assessment modalities: ELS; salivary cortisol levels during a psychosocial stress task; diffusion magnetic resonance imaging; and depressive symptoms. In early puberty there were significant associations between higher ELS and decreased cortisol production, and between decreased cortisol production and increased fractional anisotropy in the uncinate fasciculus. Further, increased fractional anisotropy in the uncinate fasciculus predicted higher depressive symptoms in later puberty, above and beyond earlier symptoms. In post hoc analyses, we found that sex moderated several additional associations. We discuss these findings within a broader conceptual model linking ELS, emotion dysregulation, and depression across the transition through puberty, and contend that brain circuits implicated in the control of hypothalamic-pituitary-adrenal axis function should be a focus of continued research.
0 Communities
1 Members
0 Resources
MeSH Terms
Childhood temperament is associated with distress, anxiety and reduced quality of life in schizophrenia spectrum disorders.
Feola B, Armstrong K, Woodward ND, Heckers S, Blackford JU
(2019) Psychiatry Res 275: 196-203
MeSH Terms: Adult, Anxiety, Child, Cognition, Comorbidity, Female, Humans, Male, Personality, Personality Disorders, Quality of Life, Schizophrenia, Schizophrenic Psychology, Social Behavior, Stress, Psychological, Substance-Related Disorders, Temperament
Show Abstract · Added January 31, 2020
Schizophrenia is conceptualized as a neurodevelopmental disorder and pre-morbid differences in social function and cognition have been well-established. Less is known about pre-morbid temperament and personality. Inhibited temperament-the predisposition to respond to novelty with wariness, fear, or caution-is a premorbid risk factor for anxiety, depression, and substance use but is understudied in schizophrenia. Participants were patients with schizophrenia spectrum disorders (n = 166) and healthy controls (n = 180). Patients completed measures of childhood inhibited temperament, clinical symptoms (anxiety, depression, PANSS factors), and quality of life. Patients had significantly higher levels of inhibited temperament relative to healthy controls. In patients with schizophrenia, higher inhibited temperament was significantly associated with co-morbid anxiety disorders, greater anxiety and depression symptoms, higher PANSS Distress scores, lower PANSS Excitement scores, and lower quality of life. The current findings replicate and extend previous research with a larger sample and are consistent with vulnerability in an affective path to psychosis. In schizophrenia, higher inhibited temperament was associated with a cluster of mood and anxiety symptoms. Inhibited temperament was not associated with psychosis symptoms. Patients with high inhibited temperament may especially benefit from treatments that specifically target anxiety and depression.
Copyright © 2019. Published by Elsevier B.V.
0 Communities
2 Members
0 Resources
MeSH Terms
VU0810464, a non-urea G protein-gated inwardly rectifying K (K 3/GIRK) channel activator, exhibits enhanced selectivity for neuronal K 3 channels and reduces stress-induced hyperthermia in mice.
Vo BN, Abney KK, Anderson A, Marron Fernandez de Velasco E, Benneyworth MA, Daniels JS, Morrison RD, Hopkins CR, Weaver CD, Wickman K
(2019) Br J Pharmacol 176: 2238-2249
MeSH Terms: Animals, Anxiety, Behavior, Animal, Brain, Cells, Cultured, Female, Fever, G Protein-Coupled Inwardly-Rectifying Potassium Channels, Male, Mice, Inbred C57BL, Mice, Transgenic, Neurons, Sinoatrial Node, Stress, Psychological
Show Abstract · Added April 10, 2019
BACKGROUND AND PURPOSE - G protein-gated inwardly rectifying K (K 3) channels moderate the activity of excitable cells and have been implicated in neurological disorders and cardiac arrhythmias. Most neuronal K 3 channels consist of K 3.1 and K 3.2 subtypes, while cardiac K 3 channels consist of K 3.1 and K 3.4 subtypes. Previously, we identified a family of urea-containing K 3 channel activators, but these molecules exhibit suboptimal pharmacokinetic properties and modest selectivity for K 3.1/3.2 relative to K 3.1/3.4 channels. Here, we characterize a non-urea activator, VU0810464, which displays nanomolar potency as a K 3.1/3.2 activator, improved selectivity for neuronal K 3 channels, and improved brain penetration.
EXPERIMENTAL APPROACH - We used whole-cell electrophysiology to measure the efficacy and potency of VU0810464 in neurons and the selectivity of VU0810464 for neuronal and cardiac K 3 channel subtypes. We tested VU0810464 in vivo in stress-induced hyperthermia and elevated plus maze paradigms. Parallel studies with ML297, the prototypical activator of K 3.1-containing K 3 channels, were performed to permit direct comparisons.
KEY RESULTS - VU0810464 and ML297 exhibited comparable efficacy and potency as neuronal K 3 channel activators, but VU0810464 was more selective for neuronal K 3 channels. VU0810464, like ML297, reduced stress-induced hyperthermia in a K 3-dependent manner in mice. ML297, but not VU0810464, decreased anxiety-related behaviour as assessed with the elevated plus maze test.
CONCLUSION AND IMPLICATIONS - VU0810464 represents a new class of K 3 channel activator with enhanced selectivity for K 3.1/3.2 channels. VU0810464 may be useful for examining K 3.1/3.2 channel contributions to complex behaviours and for probing the potential of K 3 channel-dependent manipulations to treat neurological disorders.
© 2019 The British Pharmacological Society.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Estrogen, Stress, and Depression: Cognitive and Biological Interactions.
Albert KM, Newhouse PA
(2019) Annu Rev Clin Psychol 15: 399-423
MeSH Terms: Attention, Brain, Cognitive Dysfunction, Depressive Disorder, Major, Emotional Regulation, Estrogens, Female, Humans, Nerve Net, Stress, Psychological
Show Abstract · Added March 3, 2020
This article reviews the interactions of estrogen changes and psychosocial stress in contributing to vulnerability to major depressive disorder (MDD) in women. Estrogen modulates brain networks and processes related to changes in stress response, cognition, and emotional dysregulation that are core characteristics of MDD. Synergistic effects of estrogen on cognitive and emotional function, particularly during psychosocial stress, may underlie the association of ovarian hormone fluctuation and depression in women. We propose a model of estrogen effects on multiple brain systems that interface with stress-related emotional and cognitive processes implicated in MDD and discuss possible mechanisms through which reproductive events and changes in estrogen may contribute to MDD risk in women with other concurrent risk factors.
0 Communities
1 Members
0 Resources
10 MeSH Terms