Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 25

Publication Record

Connections

Imbalance between HDAC and HAT activities drives aberrant STAT1/MyD88 expression in macrophages from type 1 diabetic mice.
Filgueiras LR, Brandt SL, Ramalho TR, Jancar S, Serezani CH
(2017) J Diabetes Complications 31: 334-339
MeSH Terms: Acetylation, Animals, Bone Marrow Cells, Cells, Cultured, Diabetes Mellitus, Type 1, Enzyme Inhibitors, Epigenesis, Genetic, Gene Expression Regulation, Glucose, Histone Acetyltransferases, Histone Deacetylases, Histones, Macrophages, Macrophages, Peritoneal, Male, Mice, Inbred C57BL, Myeloid Differentiation Factor 88, Osmolar Concentration, Promoter Regions, Genetic, Protein Processing, Post-Translational, STAT1 Transcription Factor, Streptozocin
Show Abstract · Added May 4, 2017
AIMS - To investigate the hypothesis that alteration in histone acetylation/deacetylation triggers aberrant STAT1/MyD88 expression in macrophages from diabetics. Increased STAT1/MyD88 expression is correlated with sterile inflammation in type 1 diabetic (T1D) mice.
METHODS - To induce diabetes, we injected low-doses of streptozotocin in C57BL/6 mice. Peritoneal or bone marrow-differentiated macrophages were cultured in 5mM (low) or 25mM (high glucose). ChIP analysis of macrophages from nondiabetic or diabetic mice was performed to determine acetylation of lysine 9 in histone H3 in MyD88 and STAT1 promoter regions. Macrophages from diabetic mice were treated with the histone acetyltransferase inhibitor anacardic acid (AA), followed by determination of mRNA expression by qPCR.
RESULTS - Increased STAT1 and MyD88 expression in macrophages from diabetic but not naive mice cultured in low glucose persisted for up to 6days. Macrophages from diabetic mice exhibited increased activity of histone acetyltransferases (HAT) and decreased histone deacetylases (HDAC) activity. We detected increased H3K9Ac binding to Stat1/Myd88 promoters in macrophages from T1D mice and AA in vitro treatment reduced STAT1 and MyD88 mRNA expression.
CONCLUSIONS/INTERPRETATION - These results indicate that histone acetylation drives elevated Stat1/Myd88 expression in macrophages from diabetic mice, and this mechanism may be involved in sterile inflammation and diabetes comorbidities.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses.
Samarakoon R, Helo S, Dobberfuhl AD, Khakoo NS, Falke L, Overstreet JM, Goldschmeding R, Higgins PJ
(2015) J Pathol 236: 421-32
MeSH Terms: Animals, Apoptosis, Aristolochic Acids, Cell Cycle Checkpoints, Cell Line, Cell Proliferation, Disease Models, Animal, Enzyme Inhibitors, Fibrosis, Gene Expression Regulation, Humans, Kidney Diseases, Kidney Tubules, Male, Mice, Inbred C57BL, PTEN Phosphohydrolase, Plasminogen Activator Inhibitor 1, RNA Interference, Signal Transduction, Smad3 Protein, Streptozocin, Transfection, Transforming Growth Factor beta1, Tumor Suppressor Protein p53, Ureteral Obstruction
Show Abstract · Added April 19, 2016
Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in several models of renal injury, including aristolochic acid nephropathy (AAN), streptozotocin (STZ)-mediated injury and ureteral unilateral obstruction (UUO), correlating with Akt, p53 and SMAD3 activation and fibrosis. Stable silencing of PTEN in HK-2 human tubular epithelial cells induced dedifferentiation and CTGF, PAI-1, vimentin, α-SMA and fibronectin expression, compared to HK-2 cells expressing control shRNA. Furthermore, PTEN knockdown stimulated Akt, SMAD3 and p53(Ser15) phosphorylation, with an accompanying decrease in population density and an increase in epithelial G1 cell cycle arrest. SMAD3 or p53 gene silencing or pharmacological blockade partially suppressed fibrotic gene expression and relieved growth inhibition orchestrated by deficiency or inhibition of PTEN. Similarly, shRNA suppression of PAI-1 rescued the PTEN loss-associated epithelial proliferative arrest. Moreover, TGFβ1-initiated fibrotic gene expression is further enhanced by PTEN depletion. Combined TGFβ1 treatment and PTEN silencing potentiated epithelial cell death via p53-dependent pathways. Thus, PTEN loss initiates tubular dysfunction via SMAD3- and p53-mediated fibrotic gene induction, with accompanying PAI-1-dependent proliferative arrest, and cooperates with TGFβ1 to induce the expression of profibrotic genes and tubular apoptosis.
Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Activated FoxM1 attenuates streptozotocin-mediated β-cell death.
Golson ML, Maulis MF, Dunn JC, Poffenberger G, Schug J, Kaestner KH, Gannon MA
(2014) Mol Endocrinol 28: 1435-47
MeSH Terms: Animals, Cell Cycle, Cell Death, Cell Proliferation, Cell Survival, Diabetes Mellitus, Female, Forkhead Box Protein M1, Forkhead Transcription Factors, Immune System, Insulin-Secreting Cells, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Regeneration, Sequence Analysis, RNA, Streptozocin
Show Abstract · Added November 25, 2014
The forkhead box transcription factor FoxM1, a positive regulator of the cell cycle, is required for β-cell mass expansion postnatally, during pregnancy, and after partial pancreatectomy. Up-regulation of full-length FoxM1, however, is unable to stimulate increases in β-cell mass in unstressed mice or after partial pancreatectomy, probably due to the lack of posttranslational activation. We hypothesized that expression of an activated form of FoxM1 could aid in recovery after β-cell injury. We therefore derived transgenic mice that inducibly express an activated version of FoxM1 in β-cells (RIP-rtTA;TetO-hemagglutinin (HA)-Foxm1(Δ)(NRD) mice). This N-terminally truncated form of FoxM1 bypasses 2 posttranslational controls: exposure of the forkhead DNA binding domain and targeted proteasomal degradation. Transgenic mice were subjected to streptozotocin (STZ)-induced β-cell ablation to test whether activated FoxM1 can promote β-cell regeneration. Mice expressing HA-FoxM1(ΔNRD) displayed decreased ad libitum-fed blood glucose and increased β-cell mass. β-Cell proliferation was actually decreased in RIP-rtTA:TetO-HA-Foxm1(NRD) mice compared with that in RIP-rtTA mice 7 days after STZ treatment. Unexpectedly, β-cell death was decreased 2 days after STZ treatment. RNA sequencing analysis indicated that activated FoxM1 alters the expression of extracellular matrix and immune cell gene profiles, which may protect against STZ-mediated death. These studies highlight a previously underappreciated role for FoxM1 in promoting β-cell survival.
1 Communities
1 Members
0 Resources
18 MeSH Terms
Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes.
Al-Hasani K, Pfeifer A, Courtney M, Ben-Othman N, Gjernes E, Vieira A, Druelle N, Avolio F, Ravassard P, Leuckx G, Lacas-Gervais S, Ambrosetti D, Benizri E, Hecksher-Sorensen J, Gounon P, Ferrer J, Gradwohl G, Heimberg H, Mansouri A, Collombat P
(2013) Dev Cell 26: 86-100
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Blood Glucose, Cell Differentiation, Cell Lineage, Cell Movement, Cellular Reprogramming, Diabetes Mellitus, Experimental, Epithelial-Mesenchymal Transition, Gene Expression Regulation, Glucagon-Secreting Cells, Homeodomain Proteins, Hypertrophy, Insulin-Secreting Cells, Mice, Nerve Tissue Proteins, Paired Box Transcription Factors, Pancreatic Ducts, Streptozocin
Show Abstract · Added August 14, 2013
It was recently demonstrated that embryonic glucagon-producing cells in the pancreas can regenerate and convert into insulin-producing β-like cells through the constitutive/ectopic expression of the Pax4 gene. However, whether α cells in adult mice display the same plasticity is unknown. Similarly, the mechanisms underlying such reprogramming remain unclear. We now demonstrate that the misexpression of Pax4 in glucagon(+) cells age-independently induces their conversion into β-like cells and their glucagon shortage-mediated replacement, resulting in islet hypertrophy and in an unexpected islet neogenesis. Combining several lineage-tracing approaches, we show that, upon Pax4-mediated α-to-β-like cell conversion, pancreatic duct-lining precursor cells are continuously mobilized, re-express the developmental gene Ngn3, and successively adopt a glucagon(+) and a β-like cell identity through a mechanism involving the reawakening of the epithelial-to-mesenchymal transition. Importantly, these processes can repeatedly regenerate the whole β cell mass and thereby reverse several rounds of toxin-induced diabetes, providing perspectives to design therapeutic regenerative strategies.
Copyright © 2013 Elsevier Inc. All rights reserved.
0 Communities
0 Members
1 Resources
19 MeSH Terms
Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli.
Hodgin JB, Nair V, Zhang H, Randolph A, Harris RC, Nelson RG, Weil EJ, Cavalcoli JD, Patel JM, Brosius FC, Kretzler M
(2013) Diabetes 62: 299-308
MeSH Terms: Adult, Animals, Diabetes Mellitus, Experimental, Diabetic Nephropathies, Gene Regulatory Networks, Humans, Janus Kinases, Kidney Glomerulus, Mice, Mice, Inbred C57BL, Mice, Inbred DBA, Middle Aged, Real-Time Polymerase Chain Reaction, STAT Transcription Factors, Species Specificity, Streptozocin
Show Abstract · Added January 28, 2014
Murine models are valuable instruments in defining the pathogenesis of diabetic nephropathy (DN), but they only partially recapitulate disease manifestations of human DN, limiting their utility. To define the molecular similarities and differences between human and murine DN, we performed a cross-species comparison of glomerular transcriptional networks. Glomerular gene expression was profiled in patients with early type 2 DN and in three mouse models (streptozotocin DBA/2, C57BLKS db/db, and eNOS-deficient C57BLKS db/db mice). Species-specific transcriptional networks were generated and compared with a novel network-matching algorithm. Three shared human-mouse cross-species glomerular transcriptional networks containing 143 (Human-DBA STZ), 97 (Human-BKS db/db), and 162 (Human-BKS eNOS(-/-) db/db) gene nodes were generated. Shared nodes across all networks reflected established pathogenic mechanisms of diabetes complications, such as elements of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and vascular endothelial growth factor receptor (VEGFR) signaling pathways. In addition, novel pathways not previously associated with DN and cross-species gene nodes and pathways unique to each of the human-mouse networks were discovered. The human-mouse shared glomerular transcriptional networks will assist DN researchers in selecting mouse models most relevant to the human disease process of interest. Moreover, they will allow identification of new pathways shared between mice and humans.
1 Communities
1 Members
0 Resources
16 MeSH Terms
Generation of functional insulin-producing cells in the gut by Foxo1 ablation.
Talchai C, Xuan S, Kitamura T, DePinho RA, Accili D
(2012) Nat Genet 44: 406-12, S1
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, C-Peptide, Cell Differentiation, Diabetes Mellitus, Experimental, Enteroendocrine Cells, Forkhead Box Protein O1, Forkhead Transcription Factors, Gastrointestinal Tract, Glucose, Hyperglycemia, Insulin, Insulin Secretion, Insulin-Secreting Cells, Mice, Mice, Transgenic, Nerve Tissue Proteins, Neuroendocrine Cells, Stem Cells, Streptozocin, Sulfonylurea Compounds, Wnt Signaling Pathway
Show Abstract · Added April 13, 2012
Restoration of regulated insulin secretion is the ultimate goal of therapy for type 1 diabetes. Here, we show that, unexpectedly, somatic ablation of Foxo1 in Neurog3(+) enteroendocrine progenitor cells gives rise to gut insulin-positive (Ins(+)) cells that express markers of mature β cells and secrete bioactive insulin as well as C-peptide in response to glucose and sulfonylureas. Lineage tracing experiments showed that gut Ins(+) cells arise cell autonomously from Foxo1-deficient cells. Inducible Foxo1 ablation in adult mice also resulted in the generation of gut Ins(+) cells. Following ablation by the β-cell toxin streptozotocin, gut Ins(+) cells regenerate and produce insulin, reversing hyperglycemia in mice. The data indicate that Neurog3(+) enteroendocrine progenitors require active Foxo1 to prevent differentiation into Ins(+) cells. Foxo1 ablation in gut epithelium may provide an approach to restore insulin production in type 1 diabetes.
0 Communities
0 Members
1 Resources
22 MeSH Terms
Reversal of type 1 diabetes in mice by brown adipose tissue transplant.
Gunawardana SC, Piston DW
(2012) Diabetes 61: 674-82
MeSH Terms: Adipose Tissue, Brown, Animals, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 1, Female, Glucose, Homeostasis, Insulin, Interleukin-6, Ion Channels, Mice, Mice, Inbred C57BL, Mitochondrial Proteins, Receptor, Insulin, Streptozocin, Tumor Necrosis Factor-alpha, Uncoupling Protein 1, Weight Gain
Show Abstract · Added December 5, 2013
Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized glucose tolerance, reduced tissue inflammation, and reversal of clinical diabetes markers such as polyuria, polydipsia, and polyphagia. These effects are independent of insulin but correlate with recovery of the animals' white adipose tissue. BAT transplants lead to significant increases in adiponectin and leptin, but with levels that are static and not responsive to glucose. Pharmacological blockade of the insulin receptor in BAT transplant mice leads to impaired glucose tolerance, similar to what is seen in nondiabetic animals, indicating that insulin receptor activity plays a role in the reversal of diabetes. One possible candidate for activating the insulin receptor is IGF-1, whose levels are also significantly elevated in BAT transplant mice. Thus, we propose that the combined action of multiple adipokines establishes a new equilibrium in the animal that allows for chronic glycemic control without insulin.
2 Communities
2 Members
0 Resources
18 MeSH Terms
Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents.
Shonesy BC, Thiruchelvam K, Parameshwaran K, Rahman EA, Karuppagounder SS, Huggins KW, Pinkert CA, Amin R, Dhanasekaran M, Suppiramaniam V
(2012) Neurobiol Aging 33: 430.e5-18
MeSH Terms: Alzheimer Disease, Animals, Brain, Humans, Injections, Intraventricular, Insulin Resistance, Long-Term Potentiation, Male, Rats, Rats, Wistar, Receptors, Glutamate, Streptozocin, Synapses, Synaptic Transmission
Show Abstract · Added July 2, 2013
To better understand the role of insulin signaling in the development of Alzheimer's disease (AD), we utilized an animal model (intracerebroventricular injection of streptozotocin-ic-streptozotocin (STZ)) that displays insulin resistance only in the brain and exhibits AD pathology. In this model, deficits in hippocampal synaptic transmission and long-term potentiation (LTP) were observed. The decline in LTP correlated with decreased expression of NMDAR subunits NR2A and NR2B. The deficits in LTP were accompanied by changes in the expression and function of synaptic AMPARs. In ic-STZ animals, an alteration in integrin-linked kinase (ILK)-glycogen synthase kinase 3 beta (GSK-3-β) signaling was identified (p < 0.05). Similarly, there was decreased expression (p < 0.05) of brain derived neurotropic factor (BDNF) and stargazin, an AMPAR auxiliary subunit; both are required for driving AMPA receptors to the surface of the postsynaptic membrane. Our data illustrate that altered ILK-GSK-3β signaling due to impaired insulin signaling may decrease the trafficking and function of postsynaptic glutamate receptors; thereby, leading to synaptic deficits contributing to memory loss.
Copyright © 2012 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone.
Nyman JS, Even JL, Jo CH, Herbert EG, Murry MR, Cockrell GE, Wahl EC, Bunn RC, Lumpkin CK, Fowlkes JL, Thrailkill KM
(2011) Bone 48: 733-40
MeSH Terms: Animals, Bone Density, Bone and Bones, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 1, Male, Mice, Mice, Inbred DBA, Streptozocin, Tomography, X-Ray Computed
Show Abstract · Added October 31, 2013
Type 1 diabetes (T1DM) increases the likelihood of a fracture. Despite serious complications in the healing of fractures among those with diabetes, the underlying causes are not delineated for the effect of diabetes on the fracture resistance of bone. Therefore, in a mouse model of T1DM, we have investigated the possibility that a prolonged state of diabetes perturbs the relationship between bone strength and structure (i.e., affects tissue properties). At 10, 15, and 18 weeks following injection of streptozotocin to induce diabetes, diabetic male mice and age-matched controls were examined for measures of skeletal integrity. We assessed 1) the moment of inertia (I(MIN)) of the cortical bone within diaphysis, trabecular bone architecture of the metaphysis, and mineralization density of the tissue (TMD) for each compartment of the femur by micro-computed tomography and 2) biomechanical properties by three-point bending test (femur) and nanoindentation (tibia). In the metaphysis, a significant decrease in trabecular bone volume fraction and trabecular TMD was apparent after 10 weeks of diabetes. For cortical bone, type 1 diabetes was associated with decreased cortical TMD, I(MIN), rigidity, and peak moment as well as a lack of normal age-related increases in the biomechanical properties. However, there were only modest differences in material properties between diabetic and normal mice at both whole bone and tissue-levels. As the duration of diabetes increased, bone toughness decreased relative to control. If the sole effect of diabetes on bone strength was due to a reduction in bone size, then I(MIN) would be the only significant variable explaining the variance in the maximum moment. However, general linear modeling found that the relationship between peak moment and I(MIN) depended on whether the bone was from a diabetic mouse and the duration of diabetes. Thus, these findings suggest that the elevated fracture risk among diabetics is impacted by complex changes in tissue properties that ultimately reduce the fracture resistance of bone.
Published by Elsevier Inc.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Evidence for a role of immunoproteasomes in regulating cardiac muscle mass in diabetic mice.
Zu L, Bedja D, Fox-Talbot K, Gabrielson KL, Van Kaer L, Becker LC, Cai ZP
(2010) J Mol Cell Cardiol 49: 5-15
MeSH Terms: Animals, Cysteine Endopeptidases, Diabetes Mellitus, Glucose, Heart, Hyperglycemia, Insulin, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Myocardium, Myosin Heavy Chains, PTEN Phosphohydrolase, Proteasome Endopeptidase Complex, Streptozocin, Ubiquitin
Show Abstract · Added December 10, 2013
The ubiquitin-proteasome system plays an important role in regulating muscle mass. Inducible immunoproteasome subunits LMP-2 and LMP-7 are constitutively expressed in the heart; however, their regulation and functions are poorly understood. We here investigated the hypothesis that immunoproteasomes regulate cardiac muscle mass in diabetic mice. Type 1 diabetes was induced in wildtype mice by streptozotocin. After hyperglycemia developed, insulin and the proteasome inhibitor epoxomicin were used to treat diabetic mice for 6weeks. Isolated mouse hearts were perfused with control or high glucose solution. Catalytic proteasome beta-subunits and proteolytic activities were analyzed in the heart by immunoblotting and fluorogenic peptide degradation assays, respectively. Insulin and epoxomicin blocked loss of heart weight and improved cardiac function in diabetic mice. LMP-7 and its corresponding chymotryptic-like proteasome activity were increased in diabetic hearts and high glucose-treated hearts. Myosin heavy chain protein was decreased in diabetic hearts, which was largely reversed by epoxomicin. High glucose decreased LMP-2 protein levels in perfused hearts. In diabetic hearts, LMP-2 expression was downregulated whereas expression of the phosphatase and tensin homologue deleted on chromosome ten (PTEN) and the muscle atrophy F-box were upregulated. Moreover, mice with muscle-specific knockout of PTEN gene demonstrated increased cardiac muscle mass, while mice with LMP-2 deficiency demonstrated PTEN accumulation, muscle mass loss, and contractile impairment in the heart. Therefore, we concluded that high glucose regulates immunoproteasome subunits and modifies proteasome activities in the heart, and that dysregulated immunoproteasome subunits may mediate loss of cardiac muscle mass in experimental diabetic mice.
Copyright 2010 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms