Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 20

Publication Record

Connections

Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone.
Rushing GV, Bollig MK, Ihrie RA
(2019) Adv Exp Med Biol 1169: 1-30
MeSH Terms: Animals, Brain, Cell Lineage, Lateral Ventricles, Mice, Neural Stem Cells, Neurons, Stem Cell Niche
Show Abstract · Added March 9, 2020
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
0 Communities
1 Members
0 Resources
MeSH Terms
p73 regulates epidermal wound healing and induced keratinocyte programming.
Beeler JS, Marshall CB, Gonzalez-Ericsson PI, Shaver TM, Santos Guasch GL, Lea ST, Johnson KN, Jin H, Venters BJ, Sanders ME, Pietenpol JA
(2019) PLoS One 14: e0218458
MeSH Terms: Animals, Cell Proliferation, DNA Damage, Ectoderm, Epithelial Cells, Gene Expression Regulation, Developmental, Hair Follicle, Humans, Keratinocytes, Mice, Mice, Knockout, Single-Cell Analysis, Skin, Stem Cell Niche, Trans-Activators, Tumor Protein p73, Wound Healing
Show Abstract · Added June 28, 2019
p63 is a transcriptional regulator of ectodermal development that is required for basal cell proliferation and stem cell maintenance. p73 is a closely related p53 family member that is expressed in select p63-positive basal cells and can heterodimerize with p63. p73-/- mice lack multiciliated cells and have reduced numbers of basal epithelial cells in select tissues; however, the role of p73 in basal epithelial cells is unknown. Herein, we show that p73-deficient mice exhibit delayed wound healing despite morphologically normal-appearing skin. The delay in wound healing is accompanied by decreased proliferation and increased levels of biomarkers of the DNA damage response in basal keratinocytes at the epidermal wound edge. In wild-type mice, this same cell population exhibited increased p73 expression after wounding. Analyzing single-cell transcriptomic data, we found that p73 was expressed by epidermal and hair follicle stem cells, cell types required for wound healing. Moreover, we discovered that p73 isoforms expressed in the skin (ΔNp73) enhance p63-mediated expression of keratinocyte genes during cellular reprogramming from a mesenchymal to basal keratinocyte-like cell. We identified a set of 44 genes directly or indirectly regulated by ΔNp73 that are involved in skin development, cell junctions, cornification, proliferation, and wound healing. Our results establish a role for p73 in cutaneous wound healing through regulation of basal keratinocyte function.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Ventricular-Subventricular Zone Contact by Glioblastoma is Not Associated with Molecular Signatures in Bulk Tumor Data.
Mistry AM, Wooten DJ, Davis LT, Mobley BC, Quaranta V, Ihrie RA
(2019) Sci Rep 9: 1842
MeSH Terms: Adult, Brain Neoplasms, Cell Line, Tumor, DNA Methylation, Datasets as Topic, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Glioblastoma, Humans, Lateral Ventricles, Male, Stem Cell Niche, Survival Analysis, Tumor Microenvironment
Show Abstract · Added April 10, 2019
Whether patients with glioblastoma that contacts the ventricular-subventricular zone stem cell niche (VSVZ + GBM) have a distinct survival profile from VSVZ - GBM patients independent of other known predictors or molecular profiles is unclear. Using multivariate Cox analysis to adjust survival for widely-accepted predictors, hazard ratios (HRs) for overall (OS) and progression free (PFS) survival between VSVZ + GBM and VSVZ - GBM patients were calculated in 170 single-institution patients and 254 patients included in both The Cancer Genome (TCGA) and Imaging (TCIA) atlases. An adjusted, multivariable analysis revealed that VSVZ contact was independently associated with decreased survival in both datasets. TCGA molecular data analyses revealed that VSVZ contact by GBM was independent of mutational, DNA methylation, gene expression, and protein expression signatures in the bulk tumor. Therefore, while survival of GBM patients is independently stratified by VSVZ contact, with VSVZ + GBM patients displaying a poor prognosis, the VSVZ + GBMs do not possess a distinct molecular signature at the bulk sample level. Focused examination of the interplay between the VSVZ microenvironment and subsets of GBM cells proximal to this region is warranted.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.
Wang X, Page-McCaw A
(2018) Development 145:
MeSH Terms: Animals, Animals, Genetically Modified, Bone Morphogenetic Proteins, Cadherins, Cell Count, Cell Differentiation, Cell Lineage, Cell Survival, Drosophila Proteins, Drosophila melanogaster, Female, Germ Cells, Ligands, Models, Biological, Ovary, Signal Transduction, Stem Cell Niche, Wnt Proteins
Show Abstract · Added March 20, 2018
Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal.
© 2018. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Space Invaders: Brain Tumor Exploitation of the Stem Cell Niche.
Sinnaeve J, Mobley BC, Ihrie RA
(2018) Am J Pathol 188: 29-38
MeSH Terms: Animals, Brain Neoplasms, Humans, Neural Stem Cells, Neurogenesis, Stem Cell Niche
Show Abstract · Added April 10, 2019
Increasing evidence indicates that the adult neurogenic niche of the ventricular-subventricular zone (V-SVZ), beyond serving as a potential site of origin, affects the outcome of malignant brain cancers. Glioma contact with this niche predicts worse prognosis, suggesting a supportive role for the V-SVZ environment in tumor initiation or progression. In this review, we describe unique components of the V-SVZ that may permit or promote tumor growth within the region. Cell-cell interactions, soluble factors, and extracellular matrix composition are discussed, and the role of the niche in future therapies is explored. The purpose of this review is to highlight niche intrinsic factors that may promote or support malignant cell growth and maintenance, and point out how we might leverage these features to improve patient outcome.
Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
The ErbB3 receptor tyrosine kinase negatively regulates Paneth cells by PI3K-dependent suppression of Atoh1.
Almohazey D, Lo YH, Vossler CV, Simmons AJ, Hsieh JJ, Bucar EB, Schumacher MA, Hamilton KE, Lau KS, Shroyer NF, Frey MR
(2017) Cell Death Differ 24: 855-865
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Communication, Cell Count, Cell Differentiation, Extracellular Signal-Regulated MAP Kinases, Female, Gene Expression Regulation, HT29 Cells, Humans, Ileum, MAP Kinase Signaling System, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Paneth Cells, Phosphatidylinositol 3-Kinases, Proto-Oncogene Proteins c-akt, Receptor, ErbB-3, Receptors, G-Protein-Coupled, Stem Cell Niche, Stem Cells
Show Abstract · Added October 16, 2018
Paneth cells (PCs), a secretory population located at the base of the intestinal crypt, support the intestinal stem cells (ISC) with growth factors and participate in innate immunity by releasing antimicrobial peptides, including lysozyme and defensins. PC dysfunction is associated with disorders such as Crohn's disease and necrotizing enterocolitis, but the specific pathways regulating PC development and function are not fully understood. Here we tested the role of the neuregulin receptor ErbB3 in control of PC differentiation and the ISC niche. Intestinal epithelial ErbB3 knockout caused precocious appearance of PCs as early as postnatal day 7, and substantially increased the number of mature PCs in adult mouse ileum. ErbB3 loss had no effect on other secretory lineages, but increased expression of the ISC marker Lgr5. ErbB3-null intestines had elevated levels of the Atoh1 transcription factor, which is required for secretory fate determination, while Atoh1 cells had reduced ErbB3, suggesting reciprocal negative regulation. ErbB3-null intestinal progenitor cells showed reduced activation of the PI3K-Akt and ERK MAPK pathways. Inhibiting these pathways in HT29 cells increased levels of ATOH1 and the PC marker LYZ. Conversely, ErbB3 activation suppressed LYZ and ATOH1 in a PI3K-dependent manner. Expansion of the PC compartment in ErbB3-null intestines was accompanied with elevated ER stress and inflammation markers, raising the possibility that negative regulation of PCs by ErbB3 is necessary to maintain homeostasis. Taken together, our data suggest that ErbB3 restricts PC numbers through PI3K-mediated suppression of Atoh1 levels leading to inhibition of PC differentiation, with important implications for regulation of the ISC niche.
0 Communities
1 Members
0 Resources
MeSH Terms
Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells.
Nalapareddy K, Nattamai KJ, Kumar RS, Karns R, Wikenheiser-Brokamp KA, Sampson LL, Mahe MM, Sundaram N, Yacyshyn MB, Yacyshyn B, Helmrath MA, Zheng Y, Geiger H
(2017) Cell Rep 18: 2608-2621
MeSH Terms: Animals, Biomarkers, Cell Count, Cell Proliferation, Cellular Senescence, Female, Intestine, Small, Mice, Organoids, Regeneration, Stem Cell Niche, Stem Cells, Wnt Signaling Pathway
Show Abstract · Added March 19, 2017
Although intestinal homeostasis is maintained by intestinal stem cells (ISCs), regeneration is impaired upon aging. Here, we first uncover changes in intestinal architecture, cell number, and cell composition upon aging. Second, we identify a decline in the regenerative capacity of ISCs upon aging because of a decline in canonical Wnt signaling in ISCs. Changes in expression of Wnts are found in stem cells themselves and in their niche, including Paneth cells and mesenchyme. Third, reactivating canonical Wnt signaling enhances the function of both murine and human ISCs and, thus, ameliorates aging-associated phenotypes of ISCs in an organoid assay. Our data demonstrate a role for impaired Wnt signaling in physiological aging of ISCs and further identify potential therapeutic avenues to improve ISC regenerative potential upon aging.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Endothelial cells control pancreatic cell fate at defined stages through EGFL7 signaling.
Kao DI, Lacko LA, Ding BS, Huang C, Phung K, Gu G, Rafii S, Stuhlmann H, Chen S
(2015) Stem Cell Reports 4: 181-9
MeSH Terms: Calcium-Binding Proteins, Cell Communication, Cell Differentiation, Cell Line, Cell Proliferation, Coculture Techniques, EGF Family of Proteins, Embryonic Stem Cells, Endothelial Cells, Endothelial Growth Factors, Gene Expression, Gene Expression Profiling, Gene Expression Regulation, Developmental, Homeodomain Proteins, Humans, Immunophenotyping, Pancreas, Phenotype, Signal Transduction, Stem Cell Niche, Trans-Activators, Transcriptome
Show Abstract · Added December 4, 2020
Although endothelial cells have been shown to affect mouse pancreatic development, their precise function in human development remains unclear. Using a coculture system containing human embryonic stem cell (hESC)-derived progenitors and endothelial cells, we found that endothelial cells play a stage-dependent role in pancreatic development, in which they maintain pancreatic progenitor (PP) self-renewal and impair further differentiation into hormone-expressing cells. The mechanistic studies suggest that the endothelial cells act through the secretion of EGFL7. Consistently, endothelial overexpression of EGFL7 in vivo using a transgenic mouse model resulted in an increase of PP proliferation rate and a decrease of differentiation toward endocrine cells. These studies not only identified the role of EGFL7 as the molecular handle involved in the crosstalk between endothelium and pancreatic epithelium, but also provide a paradigm for using hESC stepwise differentiation to dissect the stage-dependent roles of signals controlling organogenesis.
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
1 Communities
0 Members
0 Resources
22 MeSH Terms
A matrix metalloproteinase mediates long-distance attenuation of stem cell proliferation.
Wang X, Page-McCaw A
(2014) J Cell Biol 206: 923-36
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Cell Communication, Cell Line, Cell Proliferation, Drosophila Proteins, Drosophila melanogaster, Female, Male, Matrix Metalloproteinase 2, Nuclear Proteins, Ovarian Follicle, Protein Transport, Proteolysis, Stem Cell Niche, Stem Cells, Wnt Signaling Pathway, Wnt1 Protein
Show Abstract · Added January 20, 2015
Ligand-based signaling can potentiate communication between neighboring cells and between cells separated by large distances. In the Drosophila melanogaster ovary, Wingless (Wg) promotes proliferation of follicle stem cells located ~50 µm or five cell diameters away from the Wg source. How Wg traverses this distance is unclear. We find that this long-range signaling requires Division abnormally delayed (Dally)-like (Dlp), a glypican known to extend the range of Wg ligand in the wing disc by binding Wg. Dlp-mediated spreading of Wg to follicle stem cells is opposed by the extracellular protease Mmp2, which cleaved Dlp in cell culture, triggering its relocalization such that Dlp no longer contacted Wg protein. Mmp2-deficient ovaries displayed increased Wg distribution, activity, and stem cell proliferation. Mmp2 protein is expressed in the same cells that produce Wg; thus, niche cells produce both a long-range stem cell proliferation factor and a negative regulator of its spreading. This system could allow for spatial control of Wg signaling to targets at different distances from the source.
© 2014 Wang and Page-McCaw.
1 Communities
1 Members
0 Resources
18 MeSH Terms
Endothelial cells contribute to generation of adult ventricular myocytes during cardiac homeostasis.
Fioret BA, Heimfeld JD, Paik DT, Hatzopoulos AK
(2014) Cell Rep 8: 229-41
MeSH Terms: Animals, Antigens, Ly, Cell Lineage, Cells, Cultured, Coronary Vessels, Endothelial Cells, Endothelial Progenitor Cells, GATA4 Transcription Factor, Heart Ventricles, Homeostasis, Membrane Proteins, Mice, Myoblasts, Myocytes, Cardiac, Stem Cell Niche
Show Abstract · Added February 13, 2015
Cardiac tissue undergoes renewal with low rates. Although resident stem cell populations have been identified to support cardiomyocyte turnover, the source of the cardiac stem cells and their niche remain elusive. Using Cre/Lox-based cell lineage tracing strategies, we discovered that labeling of endothelial cells in the adult heart yields progeny that have cardiac stem cell characteristics and express Gata4 and Sca1. Endothelial-derived cardiac progenitor cells were localized in the arterial coronary walls with quiescent and proliferative cells in the media and adventitia layers, respectively. Within the myocardium, we identified labeled cardiomyocytes organized in clusters of single-cell origin. Pulse-chase experiments showed that generation of individual clusters was rapid but confined to specific regions of the heart, primarily in the right anterior and left posterior ventricular walls and the junctions between the two ventricles. Our data demonstrate that endothelial cells are an intrinsic component of the cardiac renewal process.
Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
15 MeSH Terms