Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 72

Publication Record

Connections

Sulfenylation of Human Liver and Kidney Microsomal Cytochromes P450 and Other Drug-Metabolizing Enzymes as a Response to Redox Alteration.
Albertolle ME, Phan TTN, Pozzi A, Guengerich FP
(2018) Mol Cell Proteomics 17: 889-900
MeSH Terms: Animals, Biocatalysis, Cysteine, Cytochrome P-450 Enzyme System, Humans, Hydrogen Peroxide, Kidney, Mice, Transgenic, Microsomes, Liver, Oxidation-Reduction, Pharmaceutical Preparations, Recombinant Proteins, Staining and Labeling, Sulfenic Acids, Sulfhydryl Compounds
Show Abstract · Added March 14, 2018
The lumen of the endoplasmic reticulum (ER) provides an oxidizing environment to aid in the formation of disulfide bonds, which is tightly regulated by both antioxidant proteins and small molecules. On the cytoplasmic side of the ER, cytochrome P450 (P450) proteins have been identified as a superfamily of enzymes that are important in the formation of endogenous chemicals as well as in the detoxication of xenobiotics. Our previous report described oxidative inhibition of P450 Family 4 enzymes via oxidation of the heme-thiolate cysteine to a sulfenic acid (-SOH) (Albertolle, M. E. (2017) 292, 11230-11242). Further proteomic analyses of murine kidney and liver microsomes led to the finding that a number of other drug-metabolizing enzymes located in the ER are also redox-regulated in this manner. We expanded our analysis of sulfenylated enzymes to human liver and kidney microsomes. Evaluation of the sulfenylation, catalytic activity, and spectral properties of P450s 1A2, 2C8, 2D6, and 3A4 led to the identification of two classes of redox sensitivity in P450 enzymes: heme-thiolate-sensitive and thiol-insensitive. These findings provide evidence for a mammalian P450 regulatory mechanism, which may also be relevant to other drug-metabolizing enzymes. (Data are available via ProteomeXchange with identifier PXD007913.).
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Isotopically nonstationary C flux analysis of cyanobacterial isobutyraldehyde production.
Jazmin LJ, Xu Y, Cheah YE, Adebiyi AO, Johnson CH, Young JD
(2017) Metab Eng 42: 9-18
MeSH Terms: Aldehydes, Bacterial Proteins, Carbon Isotopes, Malate Dehydrogenase, Phosphoenolpyruvate Carboxylase, Pyruvate Kinase, Staining and Labeling, Synechococcus
Show Abstract · Added September 11, 2017
We applied isotopically nonstationary C metabolic flux analysis (INST-MFA) to compare the pathway fluxes of wild-type (WT) Synechococcus elongatus PCC 7942 to an engineered strain (SA590) that produces isobutyraldehyde (IBA). The flux maps revealed a potential bottleneck at the pyruvate kinase (PK) reaction step that was associated with diversion of flux into a three-step PK bypass pathway involving the enzymes PEP carboxylase (PEPC), malate dehydrogenase (MDH), and malic enzyme (ME). Overexpression of pk in SA590 led to a significant improvement in IBA specific productivity. Single-gene overexpression of the three enzymes in the proposed PK bypass pathway also led to improvements in IBA production, although to a lesser extent than pk overexpression. Combinatorial overexpression of two of the three genes in the proposed PK bypass pathway (mdh and me) led to improvements in specific productivity that were similar to those achieved by single-gene pk overexpression. Our work demonstrates how C flux analysis can be used to identify potential metabolic bottlenecks and novel metabolic routes, and how these findings can guide rational metabolic engineering of cyanobacteria for increased production of desired molecules.
Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Intracellular Staining and Flow Cytometry to Identify Lymphocyte Subsets within Murine Aorta, Kidney and Lymph Nodes in a Model of Hypertension.
Laroumanie F, Dale BL, Saleh MA, Madhur MS
(2017) J Vis Exp :
MeSH Terms: Angiotensin II, Animals, Aorta, Cytokines, Disease Models, Animal, Flow Cytometry, Hypertension, Kidney, Lymph Nodes, Mice, Staining and Labeling, T-Lymphocyte Subsets
Show Abstract · Added September 7, 2017
It is now well known that T lymphocytes play a critical role in the development of several cardiovascular diseases. For example, studies from our group have shown that hypertension is associated with an excessive accumulation of T cells in the vessels and kidney during the development of experimental hypertension. Once in these tissues, T cells produce several cytokines that affect both vascular and renal function leading to vasoconstriction and sodium and water retention. To fully understand how T cells cause cardiovascular and renal diseases, it is important to be able to identify and quantify the specific T cell subsets present in these tissues. T cell subsets are defined by a combination of surface markers, the cytokines they secrete, and the transcription factors they express. The complexity of the T cell population makes flow cytometry and intracellular staining an invaluable technique to dissect the phenotypes of the lymphocytes present in tissues. Here, we provide a detailed protocol to identify the surface and intracellular markers (cytokines and transcription factors) in T cells isolated from murine kidney, aorta and aortic draining lymph nodes in a model of angiotensin II induced hypertension. The following steps are described in detail: isolation of the tissues, generation of the single cell suspensions, ex vivo stimulation, fixation, permeabilization and staining. In addition, several fundamental principles of flow cytometric analyses including choosing the proper controls and appropriate gating strategies are discussed.
1 Communities
1 Members
0 Resources
12 MeSH Terms
The use of fluorescently-tagged apoptolidins in cellular uptake and response studies.
Chong KM, Leelatian N, Deguire SM, Brockman AA, Earl D, Ihrie RA, Irish JM, Bachmann BO, Sulikowski GA
(2016) J Antibiot (Tokyo) 69: 327-30
MeSH Terms: A549 Cells, Biological Transport, Cell Line, Tumor, Flow Cytometry, Fluorescent Dyes, Humans, Macrolides, Staining and Labeling
Show Abstract · Added March 12, 2016
The apoptolidins are glycomacrolide microbial metabolites reported to be selectively cytotoxic against tumor cells. Using fluorescently tagged active derivatives we demonstrate selective uptake of these four tagged glycomacrolides in cancer cells over healthy human blood cells. We also demonstrate the utility of these five fluorescently tagged glycomacrolides in fluorescent flow cytometry to monitor cellular uptake of the six glycomacrolides and cellular response.
2 Communities
2 Members
0 Resources
8 MeSH Terms
Fluorescent Protein Approaches in Alpha Herpesvirus Research.
Hogue IB, Bosse JB, Engel EA, Scherer J, Hu JR, Del Rio T, Enquist LW
(2015) Viruses 7: 5933-61
MeSH Terms: Alphaherpesvirinae, Biomedical Research, Host-Pathogen Interactions, Luminescent Proteins, Recombinant Fusion Proteins, Staining and Labeling, Virology
Show Abstract · Added April 6, 2019
In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer.
0 Communities
1 Members
0 Resources
MeSH Terms
Analysis of the Phosphoinositide Composition of Subcellular Membrane Fractions.
Sarkes DA, Rameh LE
(2016) Methods Mol Biol 1376: 213-27
MeSH Terms: Cell Fractionation, Cell Membrane, Chromatography, High Pressure Liquid, Phosphatidylinositols, Staining and Labeling, Subcellular Fractions, Tritium
Show Abstract · Added November 26, 2018
Phosphoinositides play critical roles in the transduction of extracellular signals through the plasma membrane and also in endomembrane events important for vesicle trafficking and organelle function (Di Paolo and De Camilli, Nature 443(7112):651-657, 2006). The response triggered by these lipids is heavily dependent on the microenvironment in which they are found. HPLC analysis of labeled phosphoinositides allows quantification of the levels of each phosphoinositide species relative to their precursor, phosphatidylinositol. When combined with subcellular fractionation techniques, this strategy allows measurement of the relative phosphoinositide composition of each membrane fraction or organelle and determination of the microenvironment in which each species is enriched. Here, we describe the steps to separate and quantify total or localized phosphoinositides from cultured cells.
0 Communities
1 Members
0 Resources
MeSH Terms
Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping.
Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, Lignell A, Xiao C, Cai L, Ladinsky MS, Bjorkman PJ, Fowlkes CC, Gradinaru V
(2015) Nat Protoc 10: 1860-1896
MeSH Terms: Animals, Detergents, Histocytochemistry, Lipids, Mice, Optical Imaging, Pathology, Rats, Specimen Handling, Staining and Labeling, Time Factors, Tissue Embedding, Tissue Fixation
Show Abstract · Added July 20, 2016
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.
1 Communities
0 Members
0 Resources
13 MeSH Terms
Histology-guided protein digestion/extraction from formalin-fixed and paraffin-embedded pressure ulcer biopsies.
Taverna D, Pollins AC, Nanney LB, Sindona G, Caprioli RM
(2016) Exp Dermatol 25: 143-6
MeSH Terms: Biopsy, Chromatography, Liquid, Eosine Yellowish-(YS), Formaldehyde, Hematoxylin, Humans, Hydrogels, Paraffin Embedding, Pressure Ulcer, Proteins, Proteomics, Specimen Handling, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Staining and Labeling, Tandem Mass Spectrometry, Tissue Fixation, Trypsin
Show Abstract · Added October 15, 2015
Herein we present a simple, reproducible and versatile approach for in situ protein digestion and identification on formalin-fixed and paraffin-embedded (FFPE) tissues. This adaptation is based on the use of an enzyme delivery platform (hydrogel discs) that can be positioned on the surface of a tissue section. By simultaneous deposition of multiple hydrogels over select regions of interest within the same tissue section, multiple peptide extracts can be obtained from discrete histological areas. After enzymatic digestion, the hydrogel extracts are submitted for LC-MS/MS analysis followed by database inquiry for protein identification. Further, imaging mass spectrometry (IMS) is used to reveal the spatial distribution of the identified peptides within a serial tissue section. Optimization was achieved using cutaneous tissue from surgically excised pressure ulcers that were subdivided into two prime regions of interest: the wound bed and the adjacent dermal area. The robust display of tryptic peptides within these spectral analyses of histologically defined tissue regions suggests that LC-MS/MS in combination with IMS can serve as useful exploratory tools.
© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
1 Communities
1 Members
0 Resources
17 MeSH Terms
An Efficient Approach to Evaluate Reporter Ion Behavior from MALDI-MS/MS Data for Quantification Studies Using Isobaric Tags.
Cologna SM, Crutchfield CA, Searle BC, Blank PS, Toth CL, Ely AM, Picache JA, Backlund PS, Wassif CA, Porter FD, Yergey AL
(2015) J Proteome Res 14: 4169-78
MeSH Terms: Complex Mixtures, Hep G2 Cells, Humans, Ions, Peptides, Proteolysis, Proteome, Proteomics, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Staining and Labeling, Tandem Mass Spectrometry, Trypsin
Show Abstract · Added April 25, 2016
Protein quantification, identification, and abundance determination are important aspects of proteome characterization and are crucial in understanding biological mechanisms and human diseases. Different strategies are available to quantify proteins using mass spectrometric detection, and most are performed at the peptide level and include both targeted and untargeted methodologies. Discovery-based or untargeted approaches oftentimes use covalent tagging strategies (i.e., iTRAQ, TMT), where reporter ion signals collected in the tandem MS experiment are used for quantification. Herein we investigate the behavior of the iTRAQ 8-plex chemistry using MALDI-TOF/TOF instrumentation. The experimental design and data analysis approach described is simple and straightforward, which allows researchers to optimize data collection and proper analysis within a laboratory. iTRAQ reporter ion signals were normalized within each spectrum to remove peptide biases. An advantage of this approach is that missing reporter ion values can be accepted for purposes of protein identification and quantification without the need for ANOVA analysis. We investigate the distribution of reporter ion peak areas in an equimolar system and a mock biological system and provide recommendations for establishing fold-change cutoff values at the peptide level for iTRAQ data sets. These data provide a unique data set available to the community for informatics training and analysis.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Genetic analysis of the localization of APOBEC3F to human immunodeficiency virus type 1 virion cores.
Donahue JP, Levinson RT, Sheehan JH, Sutton L, Taylor HE, Meiler J, D'Aquila RT, Song C
(2015) J Virol 89: 2415-24
MeSH Terms: Cell Line, Cytosine Deaminase, DNA Mutational Analysis, Genes, Reporter, HIV-1, Humans, Luciferases, Models, Molecular, Mutagenesis, Site-Directed, Mutation, Missense, Staining and Labeling, Virus Assembly, beta-Galactosidase
Show Abstract · Added January 24, 2015
UNLABELLED - Members of the APOBEC3 family of cytidine deaminases vary in their proportions of a virion-incorporated enzyme that is localized to mature retrovirus cores. We reported previously that APOBEC3F (A3F) was highly localized into mature human immunodeficiency virus type 1 (HIV-1) cores and identified that L306 in the C-terminal cytidine deaminase (CD) domain contributed to its core localization (C. Song, L. Sutton, M. Johnson, R. D'Aquila, J. Donahue, J Biol Chem 287:16965-16974, 2012, http://dx.doi.org/10.1074/jbc.M111.310839). We have now determined an additional genetic determinant(s) for A3F localization to HIV-1 cores. We found that one pair of leucines in each of A3F's C-terminal and N-terminal CD domains jointly determined the degree of localization of A3F into HIV-1 virion cores. These are A3F L306/L368 (C-terminal domain) and A3F L122/L184 (N-terminal domain). Alterations to one of these specific leucine residues in either of the two A3F CD domains (A3F L368A, L122A, and L184A) decreased core localization and diminished HIV restriction without changing virion packaging. Furthermore, double mutants in these leucine residues in each of A3F's two CD domains (A3F L368A plus L184A or A3F L368A plus L122A) still were packaged into virions but completely lost core localization and anti-HIV activity. HIV virion core localization of A3F is genetically separable from its virion packaging, and anti-HIV activity requires some core localization.
IMPORTANCE - Specific leucine-leucine interactions are identified as necessary for A3F's core localization and anti-HIV activity but not for its packaging into virions. Understanding these signals may lead to novel strategies to enhance core localization that may augment effects of A3F against HIV and perhaps of other A3s against retroviruses, parvoviruses, and hepatitis B virus.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
1 Communities
3 Members
0 Resources
13 MeSH Terms