, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 310

Publication Record

Connections

exhibits heterogeneous siderophore production within the vertebrate host.
Perry WJ, Spraggins JM, Sheldon JR, Grunenwald CM, Heinrichs DE, Cassat JE, Skaar EP, Caprioli RM
(2019) Proc Natl Acad Sci U S A 116: 21980-21982
MeSH Terms: Abscess, Animals, Citrates, Host-Pathogen Interactions, Iron, Mice, Ornithine, Siderophores, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Staphylococcal Infections, Staphylococcus aureus
Show Abstract · Added January 22, 2020
Siderophores, iron-scavenging small molecules, are fundamental to bacterial nutrient metal acquisition and enable pathogens to overcome challenges imposed by nutritional immunity. Multimodal imaging mass spectrometry allows visualization of host-pathogen iron competition, by mapping siderophores within infected tissue. We have observed heterogeneous distributions of siderophores across infectious foci, challenging the paradigm that the vertebrate host is a uniformly iron-depleted environment to invading microbes.
Copyright © 2019 the Author(s). Published by PNAS.
0 Communities
3 Members
0 Resources
11 MeSH Terms
A recommended and verified procedure for in situ tryptic digestion of formalin-fixed paraffin-embedded tissues for analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry.
Judd AM, Gutierrez DB, Moore JL, Patterson NH, Yang J, Romer CE, Norris JL, Caprioli RM
(2019) J Mass Spectrom 54: 716-727
MeSH Terms: Formaldehyde, Humans, Paraffin Embedding, Proteins, Proteolysis, Specimen Handling, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Tissue Array Analysis, Tissue Fixation, Trypsin
Show Abstract · Added October 15, 2019
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a molecular imaging technology uniquely capable of untargeted measurement of proteins, lipids, and metabolites while retaining spatial information about their location in situ. This powerful combination of capabilities has the potential to bring a wealth of knowledge to the field of molecular histology. Translation of this innovative research tool into clinical laboratories requires the development of reliable sample preparation protocols for the analysis of proteins from formalin-fixed paraffin-embedded (FFPE) tissues, the standard preservation process in clinical pathology. Although ideal for stained tissue analysis by microscopy, the FFPE process cross-links, disrupts, or can remove proteins from the tissue, making analysis of the protein content challenging. To date, reported approaches differ widely in process and efficacy. This tutorial presents a strategy derived from systematic testing and optimization of key parameters, for reproducible in situ tryptic digestion of proteins in FFPE tissue and subsequent MALDI IMS analysis. The approach describes a generalized method for FFPE tissues originating from virtually any source.
© 2019 John Wiley & Sons, Ltd.
0 Communities
2 Members
0 Resources
MeSH Terms
Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue.
Prentice BM, Hart NJ, Phillips N, Haliyur R, Judd A, Armandala R, Spraggins JM, Lowe CL, Boyd KL, Stein RW, Wright CV, Norris JL, Powers AC, Brissova M, Caprioli RM
(2019) Diabetologia 62: 1036-1047
MeSH Terms: Animals, Fluorescent Antibody Technique, Gangliosides, Humans, Immunohistochemistry, Islets of Langerhans, Mice, Pancreas, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added May 7, 2019
AIMS/HYPOTHESIS - The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases.
METHODS - We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 μm) of regions of interest and leads to reduced time requirements for data acquisition.
RESULTS - MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation.
CONCLUSIONS/INTERPRETATION - The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.
1 Communities
4 Members
0 Resources
9 MeSH Terms
Imaging Mass Spectrometry: A Perspective.
Caprioli RM
(2019) J Biomol Tech 30: 7-11
MeSH Terms: Animals, Brain, Brain Chemistry, Kidney, Mice, Molecular Imaging, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added March 3, 2020
Imaging mass spectrometry (IMS) has emerged as an important imaging modality because of its broad non-specific nature for molecular detection from highly complex samples. Within this broad field, new sub-categories of technologies have been developed incorporating many different molecular ionization processes. This article will focus on one of the major ionization processes, matrix-assisted laser desorption ionization (MALDI). IMS provides a critically important technology that brings new insight into complex biological samples and opens the door to new discoveries. Applications range widely, from fundamental studies in biology to specific clinical issues, all addressing the need to understand molecular spatial distributions at the tissue and cellular levels.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Protein identification strategies in MALDI imaging mass spectrometry: a brief review.
Ryan DJ, Spraggins JM, Caprioli RM
(2019) Curr Opin Chem Biol 48: 64-72
MeSH Terms: Animals, Equipment Design, Humans, Molecular Imaging, Proteins, Specimen Handling, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Workflow
Show Abstract · Added March 26, 2019
Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a powerful technology used to investigate the spatial distributions of thousands of molecules throughout a tissue section from a single experiment. As proteins represent an important group of functional molecules in tissue and cells, the imaging of proteins has been an important point of focus in the development of IMS technologies and methods. Protein identification is crucial for the biological contextualization of molecular imaging data. However, gas-phase fragmentation efficiency of MALDI generated proteins presents significant challenges, making protein identification directly from tissue difficult. This review highlights methods and technologies specifically related to protein identification that have been developed to overcome these challenges in MALDI IMS experiments.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
8 MeSH Terms
Beyond the H&E: Advanced Technologies for in situ Tissue Biomarker Imaging.
Himmel LE, Hackett TA, Moore JL, Adams WR, Thomas G, Novitskaya T, Caprioli RM, Zijlstra A, Mahadevan-Jansen A, Boyd KL
(2018) ILAR J 59: 51-65
MeSH Terms: Animals, Biomarkers, Humans, Immunohistochemistry, In Situ Hybridization, Microscopy, Fluorescence, Quality Control, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added April 10, 2019
For decades, histopathology with routine hematoxylin and eosin staining has been and remains the gold standard for reaching a morphologic diagnosis in tissue samples from humans and veterinary species. However, within the past decade, there has been exponential growth in advanced techniques for in situ tissue biomarker imaging that bridge the divide between anatomic and molecular pathology. It is now possible to simultaneously observe localization and expression magnitude of multiple protein, nucleic acid, and molecular targets in tissue sections and apply machine learning to synthesize vast, image-derived datasets. As these technologies become more sophisticated and widely available, a team-science approach involving subspecialists with medical, engineering, and physics backgrounds is critical to upholding quality and validity in studies generating these data. The purpose of this manuscript is to detail the scientific premise, tools and training, quality control, and data collection and analysis considerations needed for the most prominent advanced imaging technologies currently applied in tissue sections: immunofluorescence, in situ hybridization, laser capture microdissection, matrix-assisted laser desorption ionization imaging mass spectrometry, and spectroscopic/optical methods. We conclude with a brief overview of future directions for ex vivo and in vivo imaging techniques.
© The Author(s) 2018. Published by Oxford University Press on behalf of the National Academy of Sciences. All rights reserved. For permissions, please email: journals.permissions@oup.com.
0 Communities
3 Members
0 Resources
8 MeSH Terms
Viewing the Future of IR through Molecular Histology: An Overview of Imaging Mass Spectrometry.
Cressman ENK, Spraggins JM
(2018) J Vasc Interv Radiol 29: 1543-1546.e1
MeSH Terms: Diffusion of Innovation, Forecasting, Humans, Molecular Imaging, Predictive Value of Tests, Radiology, Interventional, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Added March 26, 2019
0 Communities
1 Members
0 Resources
7 MeSH Terms
Next Generation Histology-Directed Imaging Mass Spectrometry Driven by Autofluorescence Microscopy.
Patterson NH, Tuck M, Lewis A, Kaushansky A, Norris JL, Van de Plas R, Caprioli RM
(2018) Anal Chem 90: 12404-12413
MeSH Terms: Animals, Female, Humans, Kidney Diseases, Malaria, Mice, Mice, Inbred BALB C, Microscopy, Fluorescence, Optical Imaging, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added October 15, 2019
Histology-directed imaging mass spectrometry (IMS) is a spatially targeted IMS acquisition method informed by expert annotation that provides rapid molecular characterization of select tissue structures. The expert annotations are usually determined on digital whole slide images of histological stains where the staining preparation is incompatible with optimal IMS preparation, necessitating serial sections: one for annotation, one for IMS. Registration is then used to align staining annotations onto the IMS tissue section. Herein, we report a next-generation histology-directed platform implementing IMS-compatible autofluorescence (AF) microscopy taken prior to any staining or IMS. The platform enables two histology-directed workflows, one that improves the registration process between two separate tissue sections using automated, computational monomodal AF-to-AF microscopy image registration, and a registration-free approach that utilizes AF directly to identify ROIs and acquire IMS on the same section. The registration approach is fully automated and delivers state of the art accuracy in histology-directed workflows for transfer of annotations (∼3-10 μm based on 4 organs from 2 species) while the direct AF approach is registration-free, allowing targeting of the finest structures visible by AF microscopy. We demonstrate the platform in biologically relevant case studies of liver stage malaria and human kidney disease with spatially targeted acquisition of sparsely distributed (composing less than one tenth of 1% of the tissue section area) malaria infected mouse hepatocytes and glomeruli in the human kidney case study.
0 Communities
2 Members
0 Resources
MeSH Terms
Advanced Registration and Analysis of MALDI Imaging Mass Spectrometry Measurements through Autofluorescence Microscopy.
Patterson NH, Tuck M, Van de Plas R, Caprioli RM
(2018) Anal Chem 90: 12395-12403
MeSH Terms: Animals, Brain, Kidney, Mice, Microscopy, Fluorescence, Optical Imaging, Rats, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added March 3, 2020
The correlation of imaging mass spectrometry (IMS) with histopathology can help relate novel molecular findings obtained through IMS to the well-characterized and validated histopathology knowledge base. The quality of correlation between these two modalities is limited by the quality of the spatial mapping that is obtained by registration of the two image types. In this work, we develop novel workflows for MALDI IMS-to-microscopy data registration and analysis using nondestructive IMS-compatible wide field autofluorescence (AF) microscopy combined with computational image registration. First, a substantially automated procedure for high-accuracy registration between IMS and microscopy data of the same section is described that explicitly links the MALDI laser ablation pattern imaged by microscopy to its corresponding IMS pixel. Subsequent examination of the registered data allows for high-confidence colocalization of image features between the two modalities, down to single-cell scales within tissue. Building on this IMS-microscopy spatial mapping, we furthermore demonstrate the automated spatial correlation between IMS measurements from serial sections. This AF-registration-driven inter-section analysis, using a combination of nonlinear AF-to-AF and IMS-to-AF image registrations, can be applied to tissue sections that are prepared and imaged with different sample preparations (e.g., lipids vs proteins) and/or that are measured using different spatial resolutions. Importantly, all registrations, whether within a single section or across serial sections, are entirely independent of the IMS intensity signal content and thus unbiased by it.
0 Communities
1 Members
0 Resources
MeSH Terms
Quantification of thioether-linked glutathione modifications in human lens proteins.
Wang Z, Schey KL
(2018) Exp Eye Res 175: 83-89
MeSH Terms: Adolescent, Alanine, Aminobutyrates, Cataract, Cellular Senescence, Chromatography, Liquid, Crystallins, Cysteine, Glutathione, Humans, Lens, Crystalline, Middle Aged, Protein Processing, Post-Translational, Serine, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Sulfides, Threonine, Tissue Donors, Young Adult
Show Abstract · Added April 4, 2019
Dehydroalanine (DHA) and dehydrobutyrine (DHB) intermediates, formed through β-elimination, induce protein irreversible glutathionylation and protein-protein crosslinking in human lens fiber cells. In total, irreversible glutathionylation was detected on 52 sites including cysteine, serine and threonine residues in 18 proteins in human lenses. In this study, the levels of GSH modification on three serine residues and four cysteine residues located in seven different lens proteins isolated from different regions and different aged lenses were quantified. The relative levels of modification (modified/nonmodified) were site-specific and age-related, ranging from less than 0.05% to about 500%. The levels of modification on all of the sites quantified in the lens cortex increased with age and GSH modification also increased from cortex to outer nucleus region suggesting an age-related increase of modification. The levels of modification on sites located in stable regions of the proteins such as Cys117 of βA3, Cys80 of βB1 and Cys27 of γS, continued increasing in inner nucleus, but modification on sites located in regions undergoing degradation with age decreased in the inner nucleus suggesting GSH modified proteins were more susceptible to further modification. Irreversible GSH modification in cataract lenses was typically higher than in age-matched normal lenses, but the difference did not reach statistical significance for a majority of sites, with the exception Cys117 of βA3 crystallin in WSF. Except for S59 of αA and αB crystallins, GSH modification did not induce protein insolubility suggesting a possible role for this modification in protection from protein-protein crosslinking.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms