Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 486

Publication Record

Connections

Renal Medullary Interstitial COX-2 (Cyclooxygenase-2) Is Essential in Preventing Salt-Sensitive Hypertension and Maintaining Renal Inner Medulla/Papilla Structural Integrity.
Zhang MZ, Wang S, Wang Y, Zhang Y, Ming Hao C, Harris RC
(2018) Hypertension 72: 1172-1179
MeSH Terms: Animals, Apoptosis, Aquaporin 2, Blood Pressure, Cyclooxygenase 2, Epithelial Sodium Channels, Hypertension, Kidney Medulla, Mice, Mice, Transgenic
Show Abstract · Added November 8, 2018
COX (cyclooxygenase)-derived prostaglandins regulate renal hemodynamics and salt and water homeostasis. Inhibition of COX activity causes blood pressure elevation. In addition, chronic analgesic abuse can induce renal injury, including papillary necrosis. COX-2 is highly expressed in the kidney papilla in renal medullary interstitial cells (RMICs). However, its role in blood pressure and papillary integrity in vivo has not been definitively studied. In mice with selective, inducible RMIC COX-2 deletion, a high-salt diet led to an increase in blood pressure that peaked at 4 to 5 weeks and was associated with increased papillary expression of AQP2 (aquaporin 2) and ENac (epithelial sodium channel) and decreased expression of cystic fibrosis transmembrane conductance regulator. With continued high-salt feeding, the mice with RMIC COX-2 deletion had progressive decreases in blood pressure from its peak. After return to a normal-salt diet for 3 weeks, blood pressure remained low and was associated with a persistent urinary concentrating defect. Within 2 weeks of institution of a high-salt diet, increased apoptotic RMICs and collecting duct cells could be detected in papillae with RMIC deletion of COX-2, and by 9 weeks of high salt, there was a striking loss of the papillae. Therefore, RMIC COX-2 expression plays a crucial role in renal handling water and sodium homeostasis, preventing salt-sensitive hypertension and maintaining structural integrity of papilla.
1 Communities
0 Members
0 Resources
10 MeSH Terms
Early urine electrolyte patterns in patients with acute heart failure.
Collins SP, Jenkins CA, Baughman A, Miller KF, Storrow AB, Han JH, Brown NJ, Liu D, Luther JM, McNaughton CD, Self WH, Peng D, Testani JM, Lindenfeld J
(2019) ESC Heart Fail 6: 80-88
MeSH Terms: Acute Disease, Aged, Biomarkers, Disease Progression, Diuretics, Female, Follow-Up Studies, Heart Failure, Humans, Male, Middle Aged, Pilot Projects, Prognosis, Prospective Studies, Sodium, Stroke Volume
Show Abstract · Added October 25, 2018
AIMS - We conducted a prospective study of emergency department (ED) patients with acute heart failure (AHF) to determine if worsening HF (WHF) could be predicted based on urinary electrolytes during the first 1-2 h of ED care. Loop diuretics are standard therapy for AHF patients. A subset of patients hospitalized for AHF will develop a blunted natriuretic response to loop diuretics, termed diuretic resistance, which often leads to WHF. Early detection of diuretic resistance could facilitate escalation of therapy and prevention of WHF.
METHODS AND RESULTS - Patients were eligible if they had an ED AHF diagnosis, had not yet received intravenous diuretics, had a systolic blood pressure > 90 mmHg, and were not on dialysis. Urine electrolytes and urine output were collected at 1, 2, 4, and 6 h after diuretic administration. Worsening HF was defined as clinically persistent or WHF requiring escalation of diuretics or administration of intravenous vasoactives after the ED stay. Of the 61 patients who qualified in this pilot study, there were 10 (16.3%) patients who fulfilled our definition of WHF. At 1 h after diuretic administration, patients who developed WHF were more likely to have low urinary sodium (9.5 vs. 43.0 mmol; P < 0.001) and decreased urine sodium concentration (48 vs. 80 mmol/L; P = 0.004) than patients without WHF. All patients with WHF had a total urine sodium of <35.4 mmol at 1 h (100% sensitivity and 60% specificity).
CONCLUSIONS - One hour after diuretic administration, a urine sodium excretion of <35.4 mmol was highly suggestive of the development of WHF. These relationships require further testing to determine if early intervention with alternative agents can prevent WHF.
© 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Genetic Variants Associated with Circulating Fibroblast Growth Factor 23.
Robinson-Cohen C, Bartz TM, Lai D, Ikizler TA, Peacock M, Imel EA, Michos ED, Foroud TM, Akesson K, Taylor KD, Malmgren L, Matsushita K, Nethander M, Eriksson J, Ohlsson C, Mellström D, Wolf M, Ljunggren O, McGuigan F, Rotter JI, Karlsson M, Econs MJ, Ix JH, Lutsey PL, Psaty BM, de Boer IH, Kestenbaum BR
(2018) J Am Soc Nephrol 29: 2583-2592
MeSH Terms: African Continental Ancestry Group, Cohort Studies, European Continental Ancestry Group, Female, Fibroblast Growth Factors, Genome-Wide Association Study, Humans, Kidney, Male, Phosphates, Polymorphism, Single Nucleotide, RGS Proteins, Sodium-Phosphate Cotransporter Proteins, Type IIa, Vitamin D, Vitamin D3 24-Hydroxylase
Show Abstract · Added January 3, 2019
BACKGROUND - Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely understood; genetic variation may help explain interindividual differences.
METHODS - We performed a meta-analysis of genome-wide association studies of circulating FGF23 concentrations among 16,624 participants of European ancestry from seven cohort studies, excluding participants with eGFR<30 ml/min per 1.73 m to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log-transformed FGF23 concentration, adjusted for age, sex, study site, and principal components of ancestry. A second model additionally adjusted for BMI and eGFR.
RESULTS - We discovered 154 SNPs from five independent regions associated with FGF23 concentration. The SNP with the strongest association, rs17216707 (=3.0×10), lies upstream of , which encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D. Each additional copy of the T allele at this locus is associated with 5% higher FGF23 concentration. Another locus strongly associated with variations in FGF23 concentration is rs11741640, within and upstream of (a gene involved in renal phosphate transport). Additional adjustment for BMI and eGFR did not materially alter the magnitude of these associations. Another top locus (within , the ABO blood group transferase gene) was no longer statistically significant at the genome-wide level.
CONCLUSIONS - Common genetic variants located near genes involved in vitamin D metabolism and renal phosphate transport are associated with differences in circulating FGF23 concentrations.
Copyright © 2018 by the American Society of Nephrology.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Loss of MYO5B Leads to Reductions in Na Absorption With Maintenance of CFTR-Dependent Cl Secretion in Enterocytes.
Engevik AC, Kaji I, Engevik MA, Meyer AR, Weis VG, Goldstein A, Hess MW, Müller T, Koepsell H, Dudeja PK, Tyska M, Huber LA, Shub MD, Ameen N, Goldenring JR
(2018) Gastroenterology 155: 1883-1897.e10
MeSH Terms: Animals, Aquaporins, Chlorides, Cystic Fibrosis Transmembrane Conductance Regulator, Duodenum, Enterocytes, Gene Silencing, Humans, Intestinal Mucosa, Intestines, Malabsorption Syndromes, Mice, Mice, Knockout, Microvilli, Mucolipidoses, Myosin Type V, Protein Transport, Sodium-Glucose Transporter 1, Sodium-Hydrogen Exchanger 3, Sodium-Hydrogen Exchangers, Sucrase-Isomaltase Complex, Tamoxifen
Show Abstract · Added February 7, 2019
BACKGROUND & AIMS - Inactivating mutations in MYO5B cause microvillus inclusion disease (MVID), but the physiological cause of the diarrhea associated with this disease is unclear. We investigated whether loss of MYO5B results in aberrant expression of apical enterocyte transporters.
METHODS - We studied alterations in apical membrane transporters in MYO5B-knockout mice, as well as mice with tamoxifen-inducible, intestine-specific disruption of Myo5b (VilCre;Myo5b mice) or those not given tamoxifen (controls). Intestinal tissues were collected from mice and analyzed by immunostaining, immunoelectron microscopy, or cultured enteroids were derived. Functions of brush border transporters in intestinal mucosa were measured in Ussing chambers. We obtained duodenal biopsy specimens from individuals with MVID and individuals without MVID (controls) and compared transporter distribution by immunocytochemistry.
RESULTS - Compared to intestinal tissues from littermate controls, intestinal tissues from MYO5B-knockout mice had decreased apical localization of SLC9A3 (also called NHE3), SLC5A1 (also called SGLT1), aquaporin (AQP) 7, and sucrase isomaltase, and subapical localization of intestinal alkaline phosphatase and CDC42. However, CFTR was present on apical membranes of enterocytes from MYO5B knockout and control mice. Intestinal biopsies from patients with MVID had subapical localization of NHE3, SGLT1, and AQP7, but maintained apical CFTR. After tamoxifen administration, VilCre;Myo5b mice lost apical NHE3, SGLT1, DRA, and AQP7, similar to germline MYO5B knockout mice. Intestinal tissues from VilCre;Myo5b mice had increased CFTR in crypts and CFTR localized to the apical membranes of enterocytes. Intestinal mucosa from VilCre;Myo5b mice given tamoxifen did not have an intestinal barrier defect, based on Ussing chamber analysis, but did have decreased SGLT1 activity and increased CFTR activity.
CONCLUSIONS - Although trafficking of many apical transporters is regulated by MYO5B, trafficking of CFTR is largely independent of MYO5B. Decreased apical localization of NHE3, SGLT1, DRA, and AQP7 might be responsible for dysfunctional water absorption in enterocytes of patients with MVID. Maintenance of apical CFTR might exacerbate water loss by active secretion of chloride into the intestinal lumen.
Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
1 Communities
0 Members
0 Resources
MeSH Terms
(Na1.5) Variant Functional Perturbation and Clinical Presentation: Variants of a Certain Significance.
Kroncke BM, Glazer AM, Smith DK, Blume JD, Roden DM
(2018) Circ Genom Precis Med 11: e002095
MeSH Terms: Animals, Cell Line, Humans, Models, Genetic, Mutation, NAV1.5 Voltage-Gated Sodium Channel, Penetrance, Probability, Statistics, Nonparametric, Uncertainty
Show Abstract · Added March 26, 2019
BACKGROUND - Accurately predicting the impact of rare nonsynonymous variants on disease risk is an important goal in precision medicine. Variants in the cardiac sodium channel (protein Na1.5; voltage-dependent cardiac Na+ channel) are associated with multiple arrhythmia disorders, including Brugada syndrome and long QT syndrome. Rare variants also occur in ≈1% of unaffected individuals. We hypothesized that in vitro electrophysiological functional parameters explain a statistically significant portion of the variability in disease penetrance.
METHODS - From a comprehensive literature review, we quantified the number of carriers presenting with and without disease for 1712 reported variants. For 356 variants, data were also available for 5 Na1.5 electrophysiological parameters: peak current, late/persistent current, steady-state V1/2 of activation and inactivation, and recovery from inactivation.
RESULTS - We found that peak and late current significantly associate with Brugada syndrome (<0.001; ρ=-0.44; Spearman rank test) and long QT syndrome disease penetrance (<0.001; ρ=0.37). Steady-state V1/2 activation and recovery from inactivation associate significantly with Brugada syndrome and long QT syndrome penetrance, respectively. Continuous estimates of disease penetrance align with the current American College of Medical Genetics classification paradigm.
CONCLUSIONS - Na1.5 in vitro electrophysiological parameters are correlated with Brugada syndrome and long QT syndrome disease risk. Our data emphasize the value of in vitro electrophysiological characterization and incorporating counts of affected and unaffected carriers to aid variant classification. This quantitative analysis of the electrophysiological literature should aid the interpretation of Na1.5 variant electrophysiological abnormalities and help improve Na1.5 variant classification.
© 2018 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Mistargeting of a truncated Na-K-2Cl cotransporter in epithelial cells.
Koumangoye R, Omer S, Delpire E
(2018) Am J Physiol Cell Physiol 315: C258-C276
MeSH Terms: Animals, Cell Membrane, Cells, Cultured, Colon, Cytoplasm, Dogs, Epithelial Cells, Female, Madin Darby Canine Kidney Cells, Male, Mice, Oocytes, Salivary Glands, Sodium-Potassium-Chloride Symporters, Sodium-Potassium-Exchanging ATPase, Solute Carrier Family 12, Member 2, Xenopus laevis
Show Abstract · Added May 4, 2018
We recently reported the case of a young patient with multisystem failure carrying a de novo mutation in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1 (NKCC1). Heterologous expression studies in nonepithelial cells failed to demonstrate dominant-negative effects. In this study, we examined expression of the mutant cotransporter in epithelial cells. Using Madin-Darby canine kidney (MDCK) cells grown on glass coverslips, permeabilized support, and Matrigel, we show that the fluorescently tagged mutant cotransporter is expressed in cytoplasm and at the apical membrane and affects epithelium integrity. Expression of the mutant transporter at the apical membrane also results in the mislocalization of some of the wild-type transporter to the apical membrane. This mistargeting is specific to NKCC1 as the Na-K-ATPase remains localized on the basolateral membrane. To assess transporter localization in vivo, we created a mouse model using CRISPR/cas9 that reproduces the 11 bp deletion in exon 22 of Slc12a2. Although the mice do not display an overt phenotype, we show that the colon and salivary gland expresses wild-type NKCC1 abundantly at the apical pole, confirming the data obtained in cultured epithelial cells. Enough cotransporter must remain, however, on the basolateral membrane to participate in saliva secretion, as no significant decrease in saliva production was observed in the mutant mice.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Functional features of the "finger" domain of the DEG/ENaC channels MEC-4 and UNC-8.
Matthewman C, Johnson CK, Miller DM, Bianchi L
(2018) Am J Physiol Cell Physiol 315: C155-C163
MeSH Terms: Amino Acid Sequence, Animals, Calcium, Cell Death, Cell Membrane Permeability, Epithelial Sodium Channels, Magnesium, Membrane Proteins, Mutation, Oocytes, Protein Transport, Sodium, Xenopus laevis
Show Abstract · Added March 26, 2019
UNC-8 and MEC-4 are two members of the degenerin/epithelial Na channel (DEG/ENaC) family of voltage-independent Na channels that share a high degree of sequence homology and functional similarity. For example, both can be hyperactivated by genetic mutations [UNC-8(d) and MEC-4(d)] that induce neuronal death by necrosis. Both depend in vivo on chaperone protein MEC-6 for function, as demonstrated by the finding that neuronal death induced by hyperactive UNC-8 and MEC-4 channels is prevented by null mutations in mec-6. UNC-8 and MEC-4 differ functionally in three major ways: 1) MEC-4 is calcium permeable, whereas UNC-8 is not; 2) UNC-8, but not MEC-4, is blocked by extracellular calcium and magnesium in the micromolar range; and 3) MEC-6 increases the number of MEC-4 channels at the cell surface in oocytes but does not have this effect on UNC-8. We previously reported that Capermeability of MEC-4 is conferred by the second transmembrane domain. We show here that the extracellular "finger" domain of UNC-8 is sufficient to mediate inhibition by divalent cations and that regulation by MEC-6 also depends on this region. Thus, our work confirms that the finger domain houses residues involved in gating of this channel class and shows for the first time that the finger domain also mediates regulation by chaperone protein MEC-6. Given that the finger domain is the most divergent region across the DEG/ENaC family, we speculate that it influences channel trafficking and function in a unique manner depending on the channel subunit.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Na -K -2Cl Cotransporter (NKCC) Physiological Function in Nonpolarized Cells and Transporting Epithelia.
Delpire E, Gagnon KB
(2018) Compr Physiol 8: 871-901
MeSH Terms: Animals, Biological Transport, Cell Membrane, Epithelial Cells, Gene Expression Regulation, Humans, Sodium-Potassium-Chloride Symporters, Structure-Activity Relationship
Show Abstract · Added April 2, 2019
Two genes encode the Na -K -2Cl cotransporters, NKCC1 and NKCC2, that mediate the tightly coupled movement of 1Na , 1K , and 2Cl across the plasma membrane of cells. Na -K -2Cl cotransport is driven by the chemical gradient of the three ionic species across the membrane, two of them maintained by the action of the Na /K pump. In many cells, NKCC1 accumulates Cl above its electrochemical potential equilibrium, thereby facilitating Cl channel-mediated membrane depolarization. In smooth muscle cells, this depolarization facilitates the opening of voltage-sensitive Ca channels, leading to Ca influx, and cell contraction. In immature neurons, the depolarization due to a GABA-mediated Cl conductance produces an excitatory rather than inhibitory response. In many cell types that have lost water, NKCC is activated to help the cells recover their volume. This is specially the case if the cells have also lost Cl . In combination with the Na /K pump, the NKCC's move ions across various specialized epithelia. NKCC1 is involved in Cl -driven fluid secretion in many exocrine glands, such as sweat, lacrimal, salivary, stomach, pancreas, and intestine. NKCC1 is also involved in K -driven fluid secretion in inner ear, and possibly in Na -driven fluid secretion in choroid plexus. In the thick ascending limb of Henle, NKCC2 activity in combination with the Na /K pump participates in reabsorbing 30% of the glomerular-filtered Na . Overall, many critical physiological functions are maintained by the activity of the two Na -K -2Cl cotransporters. In this overview article, we focus on the functional roles of the cotransporters in nonpolarized cells and in epithelia. © 2018 American Physiological Society. Compr Physiol 8:871-901, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.
0 Communities
1 Members
0 Resources
8 MeSH Terms
A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel.
Johnson CN, Potet F, Thompson MK, Kroncke BM, Glazer AM, Voehler MW, Knollmann BC, George AL, Chazin WJ
(2018) Structure 26: 683-694.e3
MeSH Terms: Binding Sites, Calcium, Calmodulin, Crystallography, X-Ray, Gene Expression Regulation, Humans, Kinetics, Models, Molecular, Mutation, NAV1.5 Voltage-Gated Sodium Channel, Protein Binding
Show Abstract · Added March 26, 2019
The function of the human cardiac sodium channel (Na1.5) is modulated by the Ca sensor calmodulin (CaM), but the underlying mechanism(s) are controversial and poorly defined. CaM has been reported to bind in a Ca-dependent manner to two sites in the intracellular loop that is critical for inactivation of Na1.5 (inactivation gate [IG]). The affinity of CaM for the complete IG was significantly stronger than that of fragments that lacked both complete binding sites. Structural analysis by nuclear magnetic resonance, crystallographic, and scattering approaches revealed that CaM simultaneously engages both IG sites using an extended configuration. Patch-clamp recordings for wild-type and mutant channels with an impaired CaM-IG interaction revealed CaM binding to the IG promotes recovery from inactivation while impeding the kinetics of inactivation. Models of full-length Na1.5 suggest that CaM binding to the IG directly modulates channel function by destabilizing the inactivated state, which would promote resetting of the IG after channels close.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
MeSH Terms
High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins.
Loh JT, Beckett AC, Scholz MB, Cover TL
(2018) Infect Immun 86:
MeSH Terms: Bacterial Outer Membrane Proteins, Gene Expression Regulation, Bacterial, Helicobacter Infections, Helicobacter pylori, Humans, Operon, Sodium Chloride, Transcription, Genetic, Up-Regulation
Show Abstract · Added July 29, 2018
infection and high dietary salt intake are risk factors for the development of gastric adenocarcinoma. One possible mechanism by which a high-salt diet could influence gastric cancer risk is by modulating gene expression. In this study, we utilized transcriptome sequencing (RNA-seq) methodology to compare the transcriptional profiles of grown in media containing different concentrations of sodium chloride. We identified 118 differentially expressed genes (65 upregulated and 53 downregulated in response to high-salt conditions), including multiple members of 14 operons. Twenty-nine of the differentially expressed genes encode proteins previously shown to undergo salt-responsive changes in abundance, based on proteomic analyses. Real-time reverse transcription (RT)-PCR analyses validated differential expression of multiple genes encoding outer membrane proteins, including adhesins (SabA and HopQ) and proteins involved in iron acquisition (FecA2 and FecA3). Transcript levels of , , and are increased under high-salt conditions, whereas transcript levels of and are decreased under high-salt conditions. Transcription of , , , and is derepressed in an mutant strain, but salt-responsive transcription of these genes is not mediated by the ArsRS two-component system, and the CrdRS and FlgRS two-component systems do not have any detectable effects on transcription of these genes. In summary, these data provide a comprehensive view of transcriptional alterations that occur in response to high-salt environmental conditions.
Copyright © 2018 American Society for Microbiology.
0 Communities
1 Members
0 Resources
9 MeSH Terms