Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 74

Publication Record

Connections

Renal Medullary Interstitial COX-2 (Cyclooxygenase-2) Is Essential in Preventing Salt-Sensitive Hypertension and Maintaining Renal Inner Medulla/Papilla Structural Integrity.
Zhang MZ, Wang S, Wang Y, Zhang Y, Ming Hao C, Harris RC
(2018) Hypertension 72: 1172-1179
MeSH Terms: Animals, Apoptosis, Aquaporin 2, Blood Pressure, Cyclooxygenase 2, Epithelial Sodium Channels, Hypertension, Kidney Medulla, Mice, Mice, Transgenic
Show Abstract · Added November 8, 2018
COX (cyclooxygenase)-derived prostaglandins regulate renal hemodynamics and salt and water homeostasis. Inhibition of COX activity causes blood pressure elevation. In addition, chronic analgesic abuse can induce renal injury, including papillary necrosis. COX-2 is highly expressed in the kidney papilla in renal medullary interstitial cells (RMICs). However, its role in blood pressure and papillary integrity in vivo has not been definitively studied. In mice with selective, inducible RMIC COX-2 deletion, a high-salt diet led to an increase in blood pressure that peaked at 4 to 5 weeks and was associated with increased papillary expression of AQP2 (aquaporin 2) and ENac (epithelial sodium channel) and decreased expression of cystic fibrosis transmembrane conductance regulator. With continued high-salt feeding, the mice with RMIC COX-2 deletion had progressive decreases in blood pressure from its peak. After return to a normal-salt diet for 3 weeks, blood pressure remained low and was associated with a persistent urinary concentrating defect. Within 2 weeks of institution of a high-salt diet, increased apoptotic RMICs and collecting duct cells could be detected in papillae with RMIC deletion of COX-2, and by 9 weeks of high salt, there was a striking loss of the papillae. Therefore, RMIC COX-2 expression plays a crucial role in renal handling water and sodium homeostasis, preventing salt-sensitive hypertension and maintaining structural integrity of papilla.
1 Communities
0 Members
0 Resources
10 MeSH Terms
Functional features of the "finger" domain of the DEG/ENaC channels MEC-4 and UNC-8.
Matthewman C, Johnson CK, Miller DM, Bianchi L
(2018) Am J Physiol Cell Physiol 315: C155-C163
MeSH Terms: Amino Acid Sequence, Animals, Calcium, Cell Death, Cell Membrane Permeability, Epithelial Sodium Channels, Magnesium, Membrane Proteins, Mutation, Oocytes, Protein Transport, Sodium, Xenopus laevis
Show Abstract · Added March 26, 2019
UNC-8 and MEC-4 are two members of the degenerin/epithelial Na channel (DEG/ENaC) family of voltage-independent Na channels that share a high degree of sequence homology and functional similarity. For example, both can be hyperactivated by genetic mutations [UNC-8(d) and MEC-4(d)] that induce neuronal death by necrosis. Both depend in vivo on chaperone protein MEC-6 for function, as demonstrated by the finding that neuronal death induced by hyperactive UNC-8 and MEC-4 channels is prevented by null mutations in mec-6. UNC-8 and MEC-4 differ functionally in three major ways: 1) MEC-4 is calcium permeable, whereas UNC-8 is not; 2) UNC-8, but not MEC-4, is blocked by extracellular calcium and magnesium in the micromolar range; and 3) MEC-6 increases the number of MEC-4 channels at the cell surface in oocytes but does not have this effect on UNC-8. We previously reported that Capermeability of MEC-4 is conferred by the second transmembrane domain. We show here that the extracellular "finger" domain of UNC-8 is sufficient to mediate inhibition by divalent cations and that regulation by MEC-6 also depends on this region. Thus, our work confirms that the finger domain houses residues involved in gating of this channel class and shows for the first time that the finger domain also mediates regulation by chaperone protein MEC-6. Given that the finger domain is the most divergent region across the DEG/ENaC family, we speculate that it influences channel trafficking and function in a unique manner depending on the channel subunit.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Dendritic Cell Amiloride-Sensitive Channels Mediate Sodium-Induced Inflammation and Hypertension.
Barbaro NR, Foss JD, Kryshtal DO, Tsyba N, Kumaresan S, Xiao L, Mernaugh RL, Itani HA, Loperena R, Chen W, Dikalov S, Titze JM, Knollmann BC, Harrison DG, Kirabo A
(2017) Cell Rep 21: 1009-1020
MeSH Terms: Amiloride, Animals, Cells, Cultured, Cytokines, Dendritic Cells, Epithelial Sodium Channel Blockers, Epithelial Sodium Channels, Hypertension, Inflammation, Male, Mice, Mice, Inbred C57BL, NADPH Oxidases, Oxidative Stress, Prostaglandins E, Protein Kinase C, Sodium, Sodium-Hydrogen Exchanger 1, Superoxides
Show Abstract · Added December 27, 2017
Sodium accumulates in the interstitium and promotes inflammation through poorly defined mechanisms. We describe a pathway by which sodium enters dendritic cells (DCs) through amiloride-sensitive channels including the alpha and gamma subunits of the epithelial sodium channel and the sodium hydrogen exchanger 1. This leads to calcium influx via the sodium calcium exchanger, activation of protein kinase C (PKC), phosphorylation of p47, and association of p47 with gp91. The assembled NADPH oxidase produces superoxide with subsequent formation of immunogenic isolevuglandin (IsoLG)-protein adducts. DCs activated by excess sodium produce increased interleukin-1β (IL-1β) and promote T cell production of cytokines IL-17A and interferon gamma (IFN-γ). When adoptively transferred into naive mice, these DCs prime hypertension in response to a sub-pressor dose of angiotensin II. These findings provide a mechanistic link between salt, inflammation, and hypertension involving increased oxidative stress and IsoLG production in DCs.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.
Grimm PR, Coleman R, Delpire E, Welling PA
(2017) J Am Soc Nephrol 28: 2597-2606
MeSH Terms: Aldosterone, Animals, Blood Pressure, Epithelial Sodium Channels, Hydrochlorothiazide, Kidney Tubules, Distal, Mice, Natriuresis, Phosphorylation, Potassium, Potassium Channels, Inwardly Rectifying, Protein-Serine-Threonine Kinases, Pseudohypoaldosteronism, Signal Transduction, Sodium Chloride Symporter Inhibitors, Solute Carrier Family 12, Member 3
Show Abstract · Added May 3, 2017
Aberrant activation of with no lysine (WNK) kinases causes familial hyperkalemic hypertension (FHHt). Thiazide diuretics treat the disease, fostering the view that hyperactivation of the thiazide-sensitive sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT) is solely responsible. However, aberrant signaling in the aldosterone-sensitive distal nephron (ASDN) and inhibition of the potassium-excretory renal outer medullary potassium (ROMK) channel have also been implicated. To test these ideas, we introduced kinase-activating mutations after Lox-P sites in the mouse gene, which encodes the terminal kinase in the WNK signaling pathway, Ste20-related proline-alanine-rich kinase (SPAK). Renal expression of the constitutively active (CA)-SPAK mutant was specifically targeted to the early DCT using a DCT-driven Cre recombinase. CA-SPAK mice displayed thiazide-treatable hypertension and hyperkalemia, concurrent with NCC hyperphosphorylation. However, thiazide-mediated inhibition of NCC and consequent restoration of sodium excretion did not immediately restore urinary potassium excretion in CA-SPAK mice. Notably, CA-SPAK mice exhibited ASDN remodeling, involving a reduction in connecting tubule mass and attenuation of epithelial sodium channel (ENaC) and ROMK expression and apical localization. Blocking hyperactive NCC in the DCT gradually restored ASDN structure and ENaC and ROMK expression, concurrent with the restoration of urinary potassium excretion. These findings verify that NCC hyperactivity underlies FHHt but also reveal that NCC-dependent changes in the driving force for potassium secretion are not sufficient to explain hyperkalemia. Instead, a DCT-ASDN coupling process controls potassium balance in health and becomes aberrantly activated in FHHt.
Copyright © 2017 by the American Society of Nephrology.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Inflammatory cytokines regulate renal sodium transporters: how, where, and why?
Norlander AE, Madhur MS
(2017) Am J Physiol Renal Physiol 313: F141-F144
MeSH Terms: Animals, Blood Pressure, Cytokines, Epithelial Cells, Epithelial Sodium Channels, Humans, Hypertension, Inflammation Mediators, Kidney, Membrane Transport Proteins, Renal Reabsorption, Signal Transduction, Sodium Chloride, Dietary
Show Abstract · Added September 7, 2017
Hypertension is growing in epidemic proportions worldwide and is now the leading preventable cause of premature death. For over a century, we have known that the kidney plays a critical role in blood pressure regulation. Specifically, abnormalities in renal sodium transport appear to be a final common pathway that gives rise to elevated blood pressure regardless of the nature of the initial hypertensive stimulus. However, it is only in the past decade that we have come to realize that inflammatory cytokines secreted by innate and adaptive immune cells, as well as renal epithelial cells, can modulate the expression and activity of sodium transporters all along the nephron, leading to alterations in pressure natriuresis, sodium and water balance, and ultimately hypertension. This mini-review highlights specific cytokines and the transporters that they regulate and discusses why inflammatory cytokines may have evolved to serve this function.
Copyright © 2017 the American Physiological Society.
1 Communities
0 Members
0 Resources
13 MeSH Terms
Genetic Determinants of Metabolism and Benign Prostate Enlargement: Associations with Prostate Volume.
Giri A, Edwards TL, Motley SS, Byerly SH, Fowke JH
(2015) PLoS One 10: e0132028
MeSH Terms: Adult, Aged, Collagen Type IV, Genetic Loci, Genotype, Humans, Linear Models, Male, Middle Aged, Nerve Tissue Proteins, Obesity, Organ Size, Polymorphism, Single Nucleotide, Prostate, Prostatic Hyperplasia, Prostatic Neoplasms, Ribosomal Proteins, Sodium Channels, Symporters, Ultrasonography
Show Abstract · Added February 22, 2016
Prostate enlargement leading to clinical benign prostatic hyperplasia (BPH) is associated with metabolic dysregulation and obesity. The genetic basis of this association is unclear. Our objective was to evaluate whether single nucleotide polymorphisms (SNPs) previously associated with metabolic disorders are also associated with prostate volume (PV). Participants included 876 men referred for prostate biopsy and found to be prostate cancer free. PV was measured by transrectal ultrasound. Samples were genotyped using the Illumina Cardio-MetaboChip platform. Multivariable adjusted linear regression models were used to evaluate SNPs (additive coding) in relation to natural-log transformed (log) PV. We compared SNP-PV results from biopsy-negative men to 442 men with low-grade prostate cancer with similar levels of obesity and PV. Beta-coefficients from the discovery and replication samples were then aggregated with fixed effects inverse variance weighted meta-analysis. SNP rs11736129 (near the pseudo-gene LOC100131429) was significantly associated with log-PV (beta: 0.16, p-value 1.16x10(-8)) after adjusting for multiple testing. Other noteworthy SNPs that were nominally associated (p-value < 1x10(-4)) with log-PV included rs9583484 (intronic SNP in COL4A2), rs10146527 (intronic SNP in NRXN3), rs9909466 (SNP near RPL32P31), and rs2241606 (synonymous SNP in SLC12A7). We found several SNPs in metabolic loci associated with PV. Further studies are needed to confirm our results and elucidate the mechanism between these genetic loci, PV, and clinical BPH.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Activation of the Endogenous Renin-Angiotensin-Aldosterone System or Aldosterone Administration Increases Urinary Exosomal Sodium Channel Excretion.
Qi Y, Wang X, Rose KL, MacDonald WH, Zhang B, Schey KL, Luther JM
(2016) J Am Soc Nephrol 27: 646-56
MeSH Terms: Adult, Aldosterone, Cross-Over Studies, Epithelial Sodium Channels, Exosomes, Female, Humans, Male, Renin-Angiotensin System, Sodium, Dietary
Show Abstract · Added November 30, 2015
Urinary exosomes secreted by multiple cell types in the kidney may participate in intercellular signaling and provide an enriched source of kidney-specific proteins for biomarker discovery. Factors that alter the exosomal protein content remain unknown. To determine whether endogenous and exogenous hormones modify urinary exosomal protein content, we analyzed samples from 14 mildly hypertensive patients in a crossover study during a high-sodium (HS, 160 mmol/d) diet and low-sodium (LS, 20 mmol/d) diet to activate the endogenous renin-angiotensin-aldosterone system. We further analyzed selected exosomal protein content in a separate cohort of healthy persons receiving intravenous aldosterone (0.7 μg/kg per hour for 10 hours) versus vehicle infusion. The LS diet increased plasma renin activity and aldosterone concentration, whereas aldosterone infusion increased only aldosterone concentration. Protein analysis of paired urine exosome samples by liquid chromatography-tandem mass spectrometry-based multidimensional protein identification technology detected 2775 unique proteins, of which 316 exhibited significantly altered abundance during LS diet. Sodium chloride cotransporter (NCC) and α- and γ-epithelial sodium channel (ENaC) subunits from the discovery set were verified using targeted multiple reaction monitoring mass spectrometry quantified with isotope-labeled peptide standards. Dietary sodium restriction or acute aldosterone infusion similarly increased urine exosomal γENaC[112-122] peptide concentrations nearly 20-fold, which correlated with plasma aldosterone concentration and urinary Na/K ratio. Urine exosomal NCC and αENaC concentrations were relatively unchanged during these interventions. We conclude that urinary exosome content is altered by renin-angiotensin-aldosterone system activation. Urinary measurement of exosomal γENaC[112-122] concentration may provide a useful biomarker of ENaC activation in future clinical studies.
Copyright © 2016 by the American Society of Nephrology.
0 Communities
3 Members
0 Resources
10 MeSH Terms
Integrated compensatory network is activated in the absence of NCC phosphorylation.
Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, Coleman R, Wade JB, Welling PA
(2015) J Clin Invest 125: 2136-50
MeSH Terms: Amiloride, Ammonia, Animals, Biological Transport, Blood Pressure, Carbonic Anhydrases, Chlorides, Disease Models, Animal, Enzyme Activation, Epithelial Sodium Channels, Gene Expression Profiling, Gene Regulatory Networks, Gitelman Syndrome, Ketoglutaric Acids, Kidney Glomerulus, Male, Mice, Mice, Knockout, Natriuresis, Nephrons, Paracrine Communication, Phosphorylation, Protein Processing, Post-Translational, Protein-Serine-Threonine Kinases, Receptors, Notch, Receptors, Purinergic P2, Renal Reabsorption, Signal Transduction, Sodium Chloride, Sodium-Potassium-Chloride Symporters, Solute Carrier Family 12, Member 3
Show Abstract · Added May 3, 2017
Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase-deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H⁺-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG-activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.
0 Communities
1 Members
0 Resources
31 MeSH Terms
Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice.
Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, Delpire E, Harrison DG, McDonough AA
(2015) Hypertension 65: 569-76
MeSH Terms: Angiotensin II, Animals, Biological Transport, Blood Pressure, Disease Models, Animal, Epithelial Sodium Channels, Genotype, Hypertension, Interferon-gamma, Interleukin-17, Kidney Tubules, Proximal, Mice, Mice, Inbred C57BL, Mice, Knockout, Sodium, Sodium Chloride Symporters, Sodium-Hydrogen Exchanger 3, Sodium-Hydrogen Exchangers, Solute Carrier Family 12, Member 1
Show Abstract · Added March 31, 2015
Ample genetic and physiological evidence establishes that renal salt handling is a critical regulator of blood pressure. Studies also establish a role for the immune system, T-cell infiltration, and immune cytokines in hypertension. This study aimed to connect immune cytokines, specifically interferon-γ (IFN-γ) and interleukin-17A (IL-17A), to sodium transporter regulation in the kidney during angiotensin-II (Ang-II) hypertension. C57BL/6J (wild-type) mice responded to Ang-II infusion (490 ng/kg per minute, 2 weeks) with a rise in blood pressure (170 mm Hg) and a significant decrease in the rate of excretion of a saline challenge. In comparison, mice that lacked the ability to produce either IFN-γ (IFN-γ(-/-)) or IL-17A (IL-17A(-/-)) exhibited a blunted rise in blood pressure (<150 mm Hg), and both the genotypes maintained baseline diuretic and natriuretic responses to a saline challenge. Along the distal nephron, Ang-II infusion increased abundance of the phosphorylated forms of the Na-K-2Cl cotransporter, Na-Cl cotransporter, and Ste20/SPS-1-related proline-alanine-rich kinase, in both the wild-type and the IL-17A(-/-) but not in IFN-γ(-/-) mice; epithelial Na channel abundance increased similarly in all the 3 genotypes. In the proximal nephron, Ang-II infusion significantly decreased abundance of Na/H-exchanger isoform 3 and the motor myosin VI in IL-17A(-/-) and IFN-γ(-/-), but not in wild-type; the Na-phosphate cotransporter decreased in all the 3 genotypes. Our results suggest that during Ang-II hypertension both IFN-γ and IL-17A production interfere with the pressure natriuretic decrease in proximal tubule sodium transport and that IFN-γ production is necessary to activate distal sodium reabsorption.
© 2015 American Heart Association, Inc.
2 Communities
2 Members
0 Resources
19 MeSH Terms
The Cyp2c44 epoxygenase regulates epithelial sodium channel activity and the blood pressure responses to increased dietary salt.
Capdevila JH, Pidkovka N, Mei S, Gong Y, Falck JR, Imig JD, Harris RC, Wang W
(2014) J Biol Chem 289: 4377-86
MeSH Terms: Animals, Blood Pressure, Cytochrome P-450 Enzyme System, Cytochrome P450 Family 2, Epithelial Sodium Channels, Humans, Hypertension, Kidney, Mice, Mice, Knockout, Mitogen-Activated Protein Kinase 3, Phosphorylation, Sodium Chloride, Dietary
Show Abstract · Added January 28, 2014
Hypertension is a major risk factor for cerebral, cardiovascular, and renal disease, and its prevalence and devastating consequences raises a need for new strategies for its early diagnosis and treatment. We show here that lack of a Cyp2c44 epoxygenase causes dietary salt-sensitive hypertension, a common form of the human disease. Cyp2c44(-/-) mice on normal salt diets are normotensive but become hypertensive when fed high salt. Hypertensive Cyp2c44(-/-) mice show a hyperactive kidney epithelial sodium channel (ENaC) and reductions in ERK1/2 and ENaC subunit phosphorylation. The demonstration that amiloride, an ENaC inhibitor, lowers the blood pressure of hypertensive Cyp2c44(-/-) mice identifies a role for the channel in the hypertensive phenotype of the animals. These studies: (a) identify an antihypertensive role for the kidney Cyp2c44 epoxygenase and for its epoxyeicosatrienoic acid (EET) metabolites in the in vivo control of ENaC activity and the activation of mitogenic kinase pathways; (b) provide evidence for a Cyp2c44 epoxygenase, EET-mediated mechanism of ENaC regulation involving an ERK1/2-catalyzed threonine phosphorylation of the channel γ subunit: and (c) characterize a common scientific platform that could explain the seemingly unrelated biological activities attributed to the epoxygenase metabolites in cell proliferation, angiogenesis, channel activity, and blood pressure control. It is expected that these results will serve as a basis for the development of novel strategies for the early diagnosis and treatment of hypertension and of pathophysiologies associated with dysfunctional mitogenic signaling.
1 Communities
1 Members
0 Resources
13 MeSH Terms