Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 275

Publication Record

Connections

Association of smoking with abdominal adipose deposition and muscle composition in Coronary Artery Risk Development in Young Adults (CARDIA) participants at mid-life: A population-based cohort study.
Terry JG, Hartley KG, Steffen LM, Nair S, Alman AC, Wellons MF, Jacobs DR, Tindle HA, Carr JJ
(2020) PLoS Med 17: e1003223
MeSH Terms: Abdominal Fat, Adiposity, Adult, Blood Pressure, Body Mass Index, Cohort Studies, Female, Humans, Intra-Abdominal Fat, Life Style, Male, Middle Aged, Muscle, Skeletal, Obesity, Abdominal, Risk Factors, Smoking, Tomography, X-Ray Computed
Show Abstract · Added July 28, 2020
BACKGROUND - Smokers have lower risk of obesity, which some consider a "beneficial" side effect of smoking. However, some studies suggest that smoking is simultaneously associated with higher central adiposity and, more specifically, ectopic adipose deposition. Little is known about the association of smoking with intermuscular adipose tissue (IMAT), an ectopic adipose depot associated with cardiovascular disease (CVD) risk and a key determinant of muscle quality and function. We tested the hypothesis that smokers have higher abdominal IMAT and lower lean muscle quality than never smokers.
METHODS AND FINDINGS - We measured abdominal muscle total, lean, and adipose volumes (in cubic centimeters) and attenuation (in Hounsfield units [HU]) along with subcutaneous (SAT) and visceral adipose tissue (VAT) volumes using computed tomography (CT) in 3,020 middle-aged Coronary Artery Risk Development in Young Adults (CARDIA) participants (age 42-58, 56.3% women, 52.6% white race) at the year 25 (Y25) visit. The longitudinal CARDIA study was initiated in 1985 with the recruitment of young adult participants (aged 18-30 years) equally balanced by female and male sex and black and white race at 4 field centers located in Birmingham, AL, Chicago, IL, Minneapolis, MN, and Oakland, CA. Multivariable linear models included potential confounders such as physical activity and dietary habits along with traditional CVD risk factors. Current smokers had lower BMI than never smokers. Nevertheless, in the fully adjusted multivariable model with potential confounders, including BMI and CVD risk factors, adjusted mean (95% CI) IMAT volume was 2.66 (2.55-2.76) cm3 in current smokers (n = 524), 2.36 (2.29-2.43) cm3 in former smokers (n = 944), and 2.23 (2.18-2.29) cm3 in never smokers (n = 1,552) (p = 0.007 for comparison of former versus never smoker, and p < 0.001 for comparison of current smoker versus never and former smoker). Moreover, compared to participants who never smoked throughout life (41.6 [41.3-41.9] HU), current smokers (40.4 [39.9-40.9] HU) and former smokers (40.8 [40.5-41.2] HU) had lower lean muscle attenuation suggesting lower muscle quality in the fully adjusted model (p < 0.001 for comparison of never smokers with either of the other two strata). Among participants who had ever smoked, pack-years of smoking exposure were directly associated with IMAT volume (β [95% CI]: 0.017 [0.010-0.025]) (p < 0.001). Despite having less SAT, current smokers also had higher VAT/SAT ratio than never smokers. These findings must be viewed with caution as residual confounding and/or reverse causation may contribute to these associations.
CONCLUSIONS - We found that, compared to those who never smoked, current and former smokers had abdominal muscle composition that was higher in adipose tissue volume, a finding consistent with higher CVD risk and age-related physical deconditioning. These findings challenge the belief that smoking-associated weight loss or maintenance confers a health benefit.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Self-reported Cannabis Use and Changes in Body Mass Index, CD4 T-Cell Counts, and HIV-1 RNA Suppression in Treated Persons with HIV.
Lee JT, Saag LA, Kipp AM, Logan J, Shepherd BE, Koethe JR, Turner M, Bebawy S, Sterling TR, Hulgan T
(2020) AIDS Behav 24: 1275-1280
MeSH Terms: Adult, Anti-HIV Agents, Antiretroviral Therapy, Highly Active, Body Mass Index, CD4 Lymphocyte Count, CD4-Positive T-Lymphocytes, Cannabis, Female, HIV Infections, HIV-1, Humans, Male, Marijuana Smoking, RNA, Retrospective Studies, Self Report, Viral Load
Show Abstract · Added December 11, 2019
Cannabis use is prevalent among HIV-positive persons, but evidence regarding the impact of cannabis in HIV-positive persons is limited. We conducted a retrospective cohort study of HIV-positive adults initiating their first antiretroviral therapy (ART) regimen. A dedicated intake form assessed self-reported cannabis use in the preceding 7 days at each visit. The relationships between time-varying cannabis use and body mass index (BMI), CD4+ T-cell count, and HIV-1 RNA levels were assessed using random effects models adjusted for age, sex, race, and other reported substance use. 4290 patient-visits from 2008 to 2011 were available from 1010 patients. Overall, there were no statistically significant differences in CD4+ T-cell count and BMI across multiple adjusted models using different measures of cannabis use (ever use during the study period, any use, and number of times used in the preceding 7 days). Cannabis use by all three measures was associated with greater odds of having a detectable viral load at a given visit than no reported use (OR 2.02, 1.72, and 1.08, respectively; all adjusted p < 0.05). Self-reported cannabis use was not associated with changes in BMI or CD4+ T-cell count in ART-naïve HIV-positive persons starting treatment. However, reported cannabis use by multiple categories was associated with having a detectable HIV-1 RNA during the study period. Associations between cannabis use, adherence, and HIV-related outcomes merit further study.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee
(2019) Circulation 139: e56-e528
MeSH Terms: American Heart Association, Cholesterol, Heart Diseases, Humans, Hypertension, Metabolic Diseases, Nutritional Status, Obesity, Quality of Health Care, Risk Factors, Smoking, Stroke, United States, Venous Thromboembolism
Added April 2, 2019
0 Communities
2 Members
0 Resources
14 MeSH Terms
Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension.
Dikalov S, Itani H, Richmond B, Vergeade A, Rahman SMJ, Boutaud O, Blackwell T, Massion PP, Harrison DG, Dikalova A
(2019) Am J Physiol Heart Circ Physiol 316: H639-H646
MeSH Terms: Angiotensin II, Animals, Blood Pressure, Calcium Channels, Endothelium, Vascular, Hydrogen Peroxide, Hypertension, Mice, Mice, Inbred C57BL, Mice, Transgenic, Mitochondria, Heart, Oxidative Stress, Superoxide Dismutase, TRPV Cation Channels, Tobacco Smoking, Vasoconstrictor Agents
Show Abstract · Added March 26, 2019
Tobacco smoking is a major risk factor for cardiovascular disease and hypertension. It is associated with the oxidative stress and induces metabolic reprogramming, altering mitochondrial function. We hypothesized that cigarette smoke induces cardiovascular mitochondrial oxidative stress, which contributes to endothelial dysfunction and hypertension. To test this hypothesis, we studied whether the scavenging of mitochondrial HO in transgenic mice expressing mitochondria-targeted catalase (mCAT) attenuates the development of cigarette smoke/angiotensin II-induced mitochondrial oxidative stress and hypertension compared with wild-type mice. Two weeks of exposure of wild-type mice with cigarette smoke increased systolic blood pressure by 17 mmHg, which was similar to the effect of a subpresssor dose of angiotensin II (0.2 mg·kg·day), leading to a moderate increase to the prehypertensive level. Cigarette smoke exposure and a low dose of angiotensin II cooperatively induced severe hypertension in wild-type mice, but the scavenging of mitochondrial HO in mCAT mice completely prevented the development of hypertension. Cigarette smoke and angiotensin II cooperatively induced oxidation of cardiolipin (a specific biomarker of mitochondrial oxidative stress) in wild-type mice, which was abolished in mCAT mice. Cigarette smoke and angiotensin II impaired endothelium-dependent relaxation and induced superoxide overproduction, which was diminished in mCAT mice. To mimic the tobacco smoke exposure, we used cigarette smoke condensate, which induced mitochondrial superoxide overproduction and reduced endothelial nitric oxide (a hallmark of endothelial dysfunction in hypertension). Western blot experiments indicated that tobacco smoke and angiotensin II reduce the mitochondrial deacetylase sirtuin-3 level and cause hyperacetylation of a key mitochondrial antioxidant, SOD2, which promotes mitochondrial oxidative stress. NEW & NOTEWORTHY This work demonstrates tobacco smoking-induced mitochondrial oxidative stress, which contributes to endothelial dysfunction and development of hypertension. We suggest that the targeting of mitochondrial oxidative stress can be beneficial for treatment of pathological conditions associated with tobacco smoking, such as endothelial dysfunction, hypertension, and cardiovascular diseases.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Machine learning selected smoking-associated DNA methylation signatures that predict HIV prognosis and mortality.
Zhang X, Hu Y, Aouizerat BE, Peng G, Marconi VC, Corley MJ, Hulgan T, Bryant KJ, Zhao H, Krystal JH, Justice AC, Xu K
(2018) Clin Epigenetics 10: 155
MeSH Terms: Adult, CpG Islands, DNA Methylation, Epigenesis, Genetic, Female, Frailty, Genome-Wide Association Study, HIV Infections, Humans, Machine Learning, Male, Middle Aged, Mortality, Prognosis, Signal Transduction, Smoking
Show Abstract · Added December 11, 2019
BACKGROUND - The effects of tobacco smoking on epigenome-wide methylation signatures in white blood cells (WBCs) collected from persons living with HIV may have important implications for their immune-related outcomes, including frailty and mortality. The application of a machine learning approach to the analysis of CpG methylation in the epigenome enables the selection of phenotypically relevant features from high-dimensional data. Using this approach, we now report that a set of smoking-associated DNA-methylated CpGs predicts HIV prognosis and mortality in an HIV-positive veteran population.
RESULTS - We first identified 137 epigenome-wide significant CpGs for smoking in WBCs from 1137 HIV-positive individuals (p < 1.70E-07). To examine whether smoking-associated CpGs were predictive of HIV frailty and mortality, we applied ensemble-based machine learning to build a model in a training sample employing 408,583 CpGs. A set of 698 CpGs was selected and predictive of high HIV frailty in a testing sample [(area under curve (AUC) = 0.73, 95%CI 0.63~0.83)] and was replicated in an independent sample [(AUC = 0.78, 95%CI 0.73~0.83)]. We further found an association of a DNA methylation index constructed from the 698 CpGs that were associated with a 5-year survival rate [HR = 1.46; 95%CI 1.06~2.02, p = 0.02]. Interestingly, the 698 CpGs located on 445 genes were enriched on the integrin signaling pathway (p = 9.55E-05, false discovery rate = 0.036), which is responsible for the regulation of the cell cycle, differentiation, and adhesion.
CONCLUSION - We demonstrated that smoking-associated DNA methylation features in white blood cells predict HIV infection-related clinical outcomes in a population living with HIV.
0 Communities
1 Members
0 Resources
MeSH Terms
Lung Dendritic Cells Drive Natural Killer Cytotoxicity in Chronic Obstructive Pulmonary Disease via IL-15Rα.
Finch DK, Stolberg VR, Ferguson J, Alikaj H, Kady MR, Richmond BW, Polosukhin VV, Blackwell TS, McCloskey L, Curtis JL, Freeman CM
(2018) Am J Respir Crit Care Med 198: 1140-1150
MeSH Terms: Aged, Animals, Cigarette Smoking, Cytotoxins, Dendritic Cells, Disease Models, Animal, Epithelial Cells, Female, Flow Cytometry, Humans, In Vitro Techniques, Interleukin-15 Receptor alpha Subunit, Killer Cells, Natural, Lymphocyte Activation, Male, Mice, Mice, Inbred C57BL, Prospective Studies, Pulmonary Disease, Chronic Obstructive
Show Abstract · Added March 30, 2020
RATIONALE - Lung natural killer cells (NKs) kill a greater percentage of autologous lung parenchymal cells in chronic obstructive pulmonary disease (COPD) than in nonobstructed smokers. To become cytotoxic, NKs require priming, typically by dendritic cells (DCs), but whether priming occurs in the lungs in COPD is unknown.
METHODS - We used lung tissue and in some cases peripheral blood from patients undergoing clinically indicated resections to determine in vitro killing of CD326 lung epithelial cells by isolated lung CD56 NKs. We also measured the cytotoxicity of unprimed blood NKs after preincubation with lung DCs. To investigate mechanisms of DC-mediated priming, we used murine models of COPD induced by cigarette smoke (CS) exposure or by polymeric immunoglobulin receptor (pIgR) deficiency, and blocked IL-15Rα (IL-15 receptor α subunit) trans-presentation by genetic and antibody approaches.
RESULTS - Human lung NKs killed isolated autologous lung epithelial cells; cytotoxicity was increased (P = 0.0001) in COPD, relative to smokers without obstruction. Similarly, increased lung NK cytotoxicity compared with control subjects was observed in CS-exposed mice and pIgR mice. Blood NKs both from smokers without obstruction and subjects with COPD showed minimal epithelial cell killing, but in COPD, preincubation with lung DCs increased cytotoxicity. NKs were primed by CS-exposed murine DCs in vitro and in vivo. Inhibiting IL-15Rα trans-presentation eliminated NK priming both by murine CS-exposed DCs and by lung DCs from subjects with COPD.
CONCLUSIONS - Heightened NK cytotoxicity against lung epithelial cells in COPD results primarily from lung DC-mediated priming via IL-15 trans-presentation on IL-15Rα. Future studies are required to test whether increased NK cytotoxicity contributes to COPD pathogenesis.
0 Communities
1 Members
0 Resources
MeSH Terms
A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.
Sung YJ, Winkler TW, de Las Fuentes L, Bentley AR, Brown MR, Kraja AT, Schwander K, Ntalla I, Guo X, Franceschini N, Lu Y, Cheng CY, Sim X, Vojinovic D, Marten J, Musani SK, Li C, Feitosa MF, Kilpeläinen TO, Richard MA, Noordam R, Aslibekyan S, Aschard H, Bartz TM, Dorajoo R, Liu Y, Manning AK, Rankinen T, Smith AV, Tajuddin SM, Tayo BO, Warren HR, Zhao W, Zhou Y, Matoba N, Sofer T, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Giulianini F, Goel A, Harris SE, Hartwig FP, Horimoto ARVR, Hsu FC, Jackson AU, Kähönen M, Kasturiratne A, Kühnel B, Leander K, Lee WJ, Lin KH, 'an Luan J, McKenzie CA, Meian H, Nelson CP, Rauramaa R, Schupf N, Scott RA, Sheu WHH, Stančáková A, Takeuchi F, van der Most PJ, Varga TV, Wang H, Wang Y, Ware EB, Weiss S, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Alfred T, Amin N, Arking D, Aung T, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Braund PS, Brody JA, Broeckel U, Cabrera CP, Cade B, Caizheng Y, Campbell A, Canouil M, Chakravarti A, CHARGE Neurology Working Group, Chauhan G, Christensen K, Cocca M, COGENT-Kidney Consortium, Collins FS, Connell JM, de Mutsert R, de Silva HJ, Debette S, Dörr M, Duan Q, Eaton CB, Ehret G, Evangelou E, Faul JD, Fisher VA, Forouhi NG, Franco OH, Friedlander Y, Gao H, GIANT Consortium, Gigante B, Graff M, Gu CC, Gu D, Gupta P, Hagenaars SP, Harris TB, He J, Heikkinen S, Heng CK, Hirata M, Hofman A, Howard BV, Hunt S, Irvin MR, Jia Y, Joehanes R, Justice AE, Katsuya T, Kaufman J, Kerrison ND, Khor CC, Koh WP, Koistinen HA, Komulainen P, Kooperberg C, Krieger JE, Kubo M, Kuusisto J, Langefeld CD, Langenberg C, Launer LJ, Lehne B, Lewis CE, Li Y, Lifelines Cohort Study, Lim SH, Lin S, Liu CT, Liu J, Liu J, Liu K, Liu Y, Loh M, Lohman KK, Long J, Louie T, Mägi R, Mahajan A, Meitinger T, Metspalu A, Milani L, Momozawa Y, Morris AP, Mosley TH, Munson P, Murray AD, Nalls MA, Nasri U, Norris JM, North K, Ogunniyi A, Padmanabhan S, Palmas WR, Palmer ND, Pankow JS, Pedersen NL, Peters A, Peyser PA, Polasek O, Raitakari OT, Renström F, Rice TK, Ridker PM, Robino A, Robinson JG, Rose LM, Rudan I, Sabanayagam C, Salako BL, Sandow K, Schmidt CO, Schreiner PJ, Scott WR, Seshadri S, Sever P, Sitlani CM, Smith JA, Snieder H, Starr JM, Strauch K, Tang H, Taylor KD, Teo YY, Tham YC, Uitterlinden AG, Waldenberger M, Wang L, Wang YX, Wei WB, Williams C, Wilson G, Wojczynski MK, Yao J, Yuan JM, Zonderman AB, Becker DM, Boehnke M, Bowden DW, Chambers JC, Chen YI, de Faire U, Deary IJ, Esko T, Farrall M, Forrester T, Franks PW, Freedman BI, Froguel P, Gasparini P, Gieger C, Horta BL, Hung YJ, Jonas JB, Kato N, Kooner JS, Laakso M, Lehtimäki T, Liang KW, Magnusson PKE, Newman AB, Oldehinkel AJ, Pereira AC, Redline S, Rettig R, Samani NJ, Scott J, Shu XO, van der Harst P, Wagenknecht LE, Wareham NJ, Watkins H, Weir DR, Wickremasinghe AR, Wu T, Zheng W, Kamatani Y, Laurie CC, Bouchard C, Cooper RS, Evans MK, Gudnason V, Kardia SLR, Kritchevsky SB, Levy D, O'Connell JR, Psaty BM, van Dam RM, Sims M, Arnett DK, Mook-Kanamori DO, Kelly TN, Fox ER, Hayward C, Fornage M, Rotimi CN, Province MA, van Duijn CM, Tai ES, Wong TY, Loos RJF, Reiner AP, Rotter JI, Zhu X, Bierut LJ, Gauderman WJ, Caulfield MJ, Elliott P, Rice K, Munroe PB, Morrison AC, Cupples LA, Rao DC, Chasman DI
(2018) Am J Hum Genet 102: 375-400
MeSH Terms: Blood Pressure, Cohort Studies, Continental Population Groups, Diastole, Epistasis, Genetic, Female, Genetic Loci, Genome-Wide Association Study, Humans, Male, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Reproducibility of Results, Smoking, Systole
Show Abstract · Added April 10, 2018
Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).
Copyright © 2018 American Society of Human Genetics. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Coronary Artery Calcium Scores and Atherosclerotic Cardiovascular Disease Risk Stratification in Smokers.
Leigh A, McEvoy JW, Garg P, Carr JJ, Sandfort V, Oelsner EC, Budoff M, Herrington D, Yeboah J
(2019) JACC Cardiovasc Imaging 12: 852-861
MeSH Terms: Aged, Aged, 80 and over, Atherosclerosis, Computed Tomography Angiography, Coronary Angiography, Coronary Artery Disease, Early Detection of Cancer, Female, Humans, Incidence, Incidental Findings, Lung Neoplasms, Male, Middle Aged, Plaque, Atherosclerotic, Predictive Value of Tests, Prevalence, Prognosis, Radiography, Thoracic, Risk Assessment, Risk Factors, Smokers, Smoking, Time Factors, United States, Vascular Calcification
Show Abstract · Added January 10, 2020
OBJECTIVES - This study assessed the utility of the pooled cohort equation (PCE) and/or coronary artery calcium (CAC) for atherosclerotic cardiovascular disease (ASCVD) risk assessment in smokers, especially those who were lung cancer screening eligible (LCSE).
BACKGROUND - The U.S. Preventive Services Task Force recommended and the Centers for Medicare & Medicaid Services currently pays for annual screening for lung cancer with low-dose computed tomography scans in a specified group of cigarette smokers. CAC can be obtained from these low-dose scans. The incremental utility of CAC for ASCVD risk stratification remains unclear in this high-risk group.
METHODS - Of 6,814 MESA (Multi-Ethnic Study of Atherosclerosis) participants, 3,356 (49.2% of total cohort) were smokers (2,476 former and 880 current), and 14.3% were LCSE. Kaplan-Meier, Cox proportional hazards, area under the curve, and net reclassification improvement (NRI) analyses were used to assess the association between PCE and/or CAC and incident ASCVD. Incident ASCVD was defined as coronary death, nonfatal myocardial infarction, or fatal or nonfatal stroke.
RESULTS - Smokers had a mean age of 62.1 years, 43.5% were female, and all had a mean of 23.0 pack-years of smoking. The LCSE sample had a mean age of 65.3 years, 39.1% were female, and all had a mean of 56.7 pack-years of smoking. After a mean of 11.1 years of follow-up 13.4% of all smokers and 20.8% of LCSE smokers had ASCVD events; 6.7% of all smokers and 14.2% of LCSE smokers with CAC = 0 had an ASCVD event during the follow-up. One SD increase in the PCE 10-year risk was associated with a 68% increase risk for ASCVD events in all smokers (hazard ratio: 1.68; 95% confidence interval: 1.57 to 1.80) and a 22% increase in risk for ASCVD events in the LCSE smokers (hazard ratio: 1.22; 95% confidence interval: 1.00 to 1.47). CAC was associated with increased ASCVD risk in all smokers and in LCSE smokers in all the Cox models. The C-statistic of the PCE for ASCVD was higher in all smokers compared with LCSE smokers (0.693 vs. 0.545). CAC significantly improved the C-statistics of the PCE in all smokers but not in LCSE smokers. The event and nonevent net reclassification improvements for all smokers and LCSE smokers were 0.018 and -0.126 versus 0.16 and -0.196, respectively.
CONCLUSIONS - In this well-characterized, multiethnic U.S. cohort, CAC was predictive of ASCVD in all smokers and in LCSE smokers but modestly improved discrimination over and beyond the PCE. However, 6.7% of all smokers and 14.2% of LCSE smokers with CAC = 0 had an ASCVD event during follow-up.
Copyright © 2019 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
26 MeSH Terms
The Impact of Smoking and TP53 Mutations in Lung Adenocarcinoma Patients with Targetable Mutations-The Lung Cancer Mutation Consortium (LCMC2).
Aisner DL, Sholl LM, Berry LD, Rossi MR, Chen H, Fujimoto J, Moreira AL, Ramalingam SS, Villaruz LC, Otterson GA, Haura E, Politi K, Glisson B, Cetnar J, Garon EB, Schiller J, Waqar SN, Sequist LV, Brahmer J, Shyr Y, Kugler K, Wistuba II, Johnson BE, Minna JD, Kris MG, Bunn PA, Kwiatkowski DJ, LCMC2 investigators
(2018) Clin Cancer Res 24: 1038-1047
MeSH Terms: Adenocarcinoma of Lung, Adult, Aged, Aged, 80 and over, Antineoplastic Agents, Biomarkers, Tumor, Carcinogenesis, DNA Mutational Analysis, Female, High-Throughput Nucleotide Sequencing, Humans, Lung Neoplasms, Male, Middle Aged, Molecular Targeted Therapy, Mutation, Prognosis, Prospective Studies, Smoking, Survival Analysis, Treatment Outcome, Tumor Suppressor Protein p53, Young Adult
Show Abstract · Added April 3, 2018
Multiplex genomic profiling is standard of care for patients with advanced lung adenocarcinomas. The Lung Cancer Mutation Consortium (LCMC) is a multi-institutional effort to identify and treat oncogenic driver events in patients with lung adenocarcinomas. Sixteen U.S. institutions enrolled 1,367 patients with lung cancer in LCMC2; 904 were deemed eligible and had at least one of 14 cancer-related genes profiled using validated methods including genotyping, massively parallel sequencing, and IHC. The use of targeted therapies in patients with or p.V600E mutations, , or rearrangements, or amplification was associated with a survival increment of 1.5 years compared with those with such mutations not receiving targeted therapy, and 1.0 year compared with those lacking a targetable driver. Importantly, 60 patients with a history of smoking derived similar survival benefit from targeted therapy for alterations in //, when compared with 75 never smokers with the same alterations. In addition, coexisting mutations were associated with shorter survival among patients with , or alterations. Patients with adenocarcinoma of the lung and an oncogenic driver mutation treated with effective targeted therapy have a longer survival, regardless of prior smoking history. Molecular testing should be performed on all individuals with lung adenocarcinomas irrespective of clinical characteristics. Routine use of massively parallel sequencing enables detection of both targetable driver alterations and tumor suppressor gene and other alterations that have potential significance for therapy selection and as predictive markers for the efficacy of treatment. .
©2017 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
23 MeSH Terms
A prospective study of immune and inflammation markers and risk of lung cancer among female never smokers in Shanghai.
Shiels MS, Shu XO, Chaturvedi AK, Gao YT, Xiang YB, Cai Q, Hu W, Shelton G, Ji BT, Pinto LA, Kemp TJ, Rothman N, Zheng W, Hildesheim A, Lan Q
(2017) Carcinogenesis 38: 1004-1010
MeSH Terms: Acute-Phase Proteins, Adult, Aged, Biomarkers, Biomarkers, Tumor, Case-Control Studies, Chemokine CX3CL1, Chemokines, China, Cytokines, Female, Humans, Inflammation, Lung Neoplasms, Middle Aged, Prospective Studies, Receptors, Interleukin-6, Risk Assessment, Smoking
Show Abstract · Added April 3, 2018
There is a paucity of data on risk factors for lung cancer among never smokers. Here, we have carried out the first large study of circulating inflammation markers and lung cancer risk among female never smokers in Shanghai. A study of 248 lung cancer cases in female never smokers and 263 controls was nested within the Shanghai Women's Health Study (n = 75221), matched by dates of birth and blood collection (mean follow-up time = 7.5 years). Prediagnostic plasma levels of 65 inflammation markers were measured using a Luminex bead-based assay. Odds ratios (ORs) were estimated with multivariable logistic regression. Nine of 61 evaluable markers were statistically significantly associated with lung cancer risk among never smoking Chinese women (P-trend across categories <0.05). Soluble interleukin-6 receptor [sIL-6R; highest versus lowest category OR = 2.37; 95% confidence interval (CI) 1.40-4.02) and chemokine (C-C motif) ligand 2/monocyte chemotactic protein 1; (OR = 1.62; 95% CI 0.94-2.80) were associated with an increased risk of lung cancer, whereas interleukin (IL)-21 (OR = 0.53; 95%CI 0.31-0.93), chemokine (C-X3-C motif) ligand 1/fractalkine (OR = 0.54; 95% CI 0.30-0.96), soluble vascular endothelial growth factor receptor 2 (sVEGFR2, OR = 0.45; 95% CI 0.26-0.76), sVEGFR3 (OR = 0.53; 95% CI 0.32-0.90), soluble tumor necrosis factor receptor I (OR = 0.49; 95% CI 0.29-0.83), IL-10 (OR = 0.60; 95% CI 0.34-1.05) and C-reactive protein (OR = 0.63; 95% CI 0.37-1.06) were associated with a decreased risk. sIL-6R remained significantly associated with lung cancer risk >7.5 years prior to diagnosis. Markers involved in various aspects of the immune response were associated with subsequent lung cancer risk, implicating inflammation in the etiology of lung cancer among female never smokers.
Published by Oxford University Press 2017.
0 Communities
1 Members
0 Resources
MeSH Terms