Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 2 of 2

Publication Record

Connections

SIRT2 knockout exacerbates insulin resistance in high fat-fed mice.
Lantier L, Williams AS, Hughey CC, Bracy DP, James FD, Ansari MA, Gius D, Wasserman DH
(2018) PLoS One 13: e0208634
MeSH Terms: Acetylation, Animals, Diet, High-Fat, Energy Metabolism, Insulin, Insulin Resistance, Liver, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mitochondria, Muscle, Skeletal, Phosphorylation, Proto-Oncogene Proteins c-akt, Sirtuin 2
Show Abstract · Added January 8, 2019
The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.
2 Communities
1 Members
0 Resources
16 MeSH Terms
Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association.
Bhattacharya S, Chaum E, Johnson DA, Johnson LR
(2012) Invest Ophthalmol Vis Sci 53: 8350-66
MeSH Terms: Acetylation, Adult, Aged, Aged, 80 and over, Aging, Apoptosis, Apoptosis Regulatory Proteins, Benzamides, Blotting, Western, Caspase 3, Cell Proliferation, Cells, Cultured, DNA Fragmentation, Disease Susceptibility, Enzyme-Linked Immunosorbent Assay, Fluorescent Antibody Technique, Indirect, Humans, Imidazoles, In Situ Nick-End Labeling, Middle Aged, Naphthols, Phosphorylation, Piperazines, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-mdm2, RNA, Small Interfering, Retinal Pigment Epithelium, Sirtuin 1, Sirtuin 2, Tumor Suppressor Protein p53
Show Abstract · Added June 11, 2018
PURPOSE - Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD).
METHODS - Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53.
RESULTS - We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis.
CONCLUSIONS - Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD.
0 Communities
1 Members
0 Resources
MeSH Terms