Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 5 of 5

Publication Record

Connections

Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction.
Yao L, Wright MF, Farmer BC, Peterson LS, Khan AM, Zhong J, Gewin L, Hao CM, Yang HC, Fogo AB
(2019) Nephrol Dial Transplant 34: 2042-2050
MeSH Terms: Actins, Animals, Collagen Type I, Connective Tissue Growth Factor, Extracellular Matrix Proteins, Fibroblasts, Fibrosis, Kidney Diseases, Mice, Mice, Knockout, Nerve Tissue Proteins, Serpin E2, Transforming Growth Factor beta, Ureteral Obstruction
Show Abstract · Added March 18, 2020
BACKGROUND - Plasminogen activator inhibitor-1 (PAI-1) expression increases extracellular matrix deposition and contributes to interstitial fibrosis in the kidney after injury. While PAI-1 is ubiquitously expressed in the kidney, we hypothesized that interstitial fibrosis is strongly dependent on fibroblast-specific PAI-1 (fbPAI-1).
METHODS - Tenascin C Cre (TNC Cre) and fbPAI-1 knockdown (KD) mice with green fluorescent protein (GFP) expressed within the TNC construct underwent unilateral ureteral obstruction and were sacrificed 10 days later.
RESULTS - GFP+ cells in fbPAI-1 KD mice showed significantly reduced PAI-1 expression. Interstitial fibrosis, measured by Sirius red staining and collagen I western blot, was significantly decreased in fbPAI-1 KD compared with TNC Cre mice. There was no significant difference in transforming growth factor β (TGF-β) expression or its activation between the two groups. However, GFP+ cells from fbPAI-1 KD mice had lower TGF β and connective tissue growth factor (CTGF) expression. The number of fibroblasts was decreased in fbPAI-1 KD compared with TNC Cre mice, correlating with decreased alpha smooth muscle actin (α-SMA) expression and less fibroblast cell proliferation. TNC Cre mice had decreased E-cadherin, a marker of differentiated tubular epithelium, in contrast to preserved expression in fbPAI-1 KD. F4/80-expressing cells, mostly CD11c+/F4/80+ cells, were increased while M1 macrophage markers were decreased in fbPAI-1 KD compared with TNC Cre mice.
CONCLUSION - These findings indicate that fbPAI-1 depletion ameliorates interstitial fibrosis by decreasing fibroblast proliferation in the renal interstitium, with resulting decreased collagen I. This is linked to decreased M1 macrophages and preserved tubular epithelium.
© The Author(s) 2019. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Tissue inflammation and nitric oxide-mediated alterations in cardiovascular function are major determinants of endotoxin-induced insulin resistance.
House LM, Morris RT, Barnes TM, Lantier L, Cyphert TJ, McGuinness OP, Otero YF
(2015) Cardiovasc Diabetol 14: 56
MeSH Terms: Animals, Arterial Pressure, Cardiac Output, Chemokine CCL2, Echocardiography, Endothelium-Dependent Relaxing Factors, Gene Expression, Glucose, Glucose Clamp Technique, Heart, Inflammation, Insulin Resistance, Interleukin-6, Lipopolysaccharides, Mice, Mice, Knockout, Microspheres, Muscle Cells, Muscle, Skeletal, Nitric Oxide, Nitric Oxide Synthase Type II, RNA, Messenger, Regional Blood Flow, Serpin E2, Tumor Necrosis Factor-alpha
Show Abstract · Added July 30, 2015
BACKGROUND - Endotoxin (i.e. LPS) administration induces a robust inflammatory response with accompanying cardiovascular dysfunction and insulin resistance. Overabundance of nitric oxide (NO) contributes to the vascular dysfunction. However, inflammation itself also induces insulin resistance in skeletal muscle. We sought to investigate whether the cardiovascular dysfunction induced by increased NO availability without inflammatory stress can promote insulin resistance. Additionally, we examined the role of inducible nitric oxide synthase (iNOS or NOS2), the source of the increase in NO availability, in modulating LPS-induced decrease in insulin-stimulated muscle glucose uptake (MGU).
METHODS - The impact of NO donor infusion on insulin-stimulated whole-body and muscle glucose uptake (hyperinsulinemic-euglycemic clamps), and the cardiovascular system was assessed in chronically catheterized, conscious mice wild-type (WT) mice. The impact of LPS on insulin action and the cardiovascular system were assessed in WT and global iNOS knockout (KO) mice. Tissue blood flow and cardiac function were assessed using microspheres and echocardiography, respectively. Insulin signaling activity, and gene expression of pro-inflammatory markers were also measured.
RESULTS - NO donor infusion decreased mean arterial blood pressure, whole-body glucose requirements, and MGU in the absence of changes in skeletal muscle blood flow. LPS lowered mean arterial blood pressure and glucose requirements in WT mice, but not in iNOS KO mice. Lastly, despite an intact inflammatory response, iNOS KO mice were protected from LPS-mediated deficits in cardiac output. LPS impaired MGU in vivo, regardless of the presence of iNOS. However, ex vivo, insulin action in muscle obtained from LPS treated iNOS KO animals was protected.
CONCLUSION - Nitric oxide excess and LPS impairs glycemic control by diminishing MGU. LPS impairs MGU by both the direct effect of inflammation on the myocyte, as well as by the indirect NO-driven cardiovascular dysfunction.
0 Communities
2 Members
2 Resources
25 MeSH Terms
Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species.
Samarakoon R, Dobberfuhl AD, Cooley C, Overstreet JM, Patel S, Goldschmeding R, Meldrum KK, Higgins PJ
(2013) Cell Signal 25: 2198-209
MeSH Terms: Animals, Benzothiazoles, Connective Tissue Growth Factor, Endothelium, Vascular, ErbB Receptors, Fibroblasts, Fibrosis, Gene Expression Regulation, Isoquinolines, Mice, Mink, Myocytes, Smooth Muscle, Pyridines, Pyrroles, Quinazolines, Rats, Reactive Oxygen Species, Renal Insufficiency, Chronic, Serpin E2, Signal Transduction, Smad2 Protein, Smad3 Protein, Toluene, Transforming Growth Factor beta1, Tumor Suppressor Protein p53, Tyrphostins
Show Abstract · Added April 19, 2016
While transforming growth factor-β (TGF-β1)-induced SMAD2/3 signaling is a critical event in the progression of chronic kidney disease, the role of non-SMAD mechanisms in the orchestration of fibrotic gene changes remains largely unexplored. TGF-β1/SMAD3 pathway activation in renal fibrosis (induced by ureteral ligation) correlated with epidermal growth factor receptor(Y845) (EGFR(Y845)) and p53(Ser15) phosphorylation and induction of disease causative target genes plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) prompting an investigation of the mechanistic involvement of EGFR and tumor suppressor p53 in profibrotic signaling. TGF-β1, PAI-1, CTGF, p53 and EGFR were co-expressed in the obstructed kidney localizing predominantly to the tubular and interstitial compartments. Indeed, TGF-β1 activated EGFR and p53 as well as SMAD2/3. Genetic deficiency of either EGFR or p53 or functional blockade with AG1478 or Pifithrin-α, respectively, effectively inhibited PAI-1and CTGF induction and morphological transformation of renal fibroblasts as did SMAD3 knockdown or pretreatment with the SMAD3 inhibitor SIS3. Reactive oxygen species (ROS)-dependent mechanisms initiated by TGF-β1 were critical for EGFR(Y845) and p53(Ser15) phosphorylation and target gene expression. The p22(Phox) subunit of NADPH oxidase was also elevated in the fibrotic kidney with an expression pattern similar to p53 and EGFR. EGF stimulation alone initiated, albeit delayed, c-terminal SMAD3 phosphorylation (that required the TGF-β1 receptor) and rapid ERK2 activation both of which are necessary for PAI-1 and CTGF induction in renal fibroblasts. These data highlight the extensive cross-talk among SMAD2/3, EGFR and p53 pathways essential for expression of TGF-β1-induced fibrotic target genes.
© 2013.
0 Communities
1 Members
0 Resources
26 MeSH Terms
Cells derived from young bone marrow alleviate renal aging.
Yang HC, Rossini M, Ma LJ, Zuo Y, Ma J, Fogo AB
(2011) J Am Soc Nephrol 22: 2028-36
MeSH Terms: Age Factors, Aging, Animals, Bone Marrow Transplantation, Cell Differentiation, Female, Fibrosis, Gene Expression, Glucuronidase, Kidney, Male, Mice, Mice, 129 Strain, Phenotype, Proto-Oncogene Proteins c-sis, Rejuvenation, S100 Calcium-Binding Protein A4, S100 Proteins, Serpin E2, Transforming Growth Factor beta1
Show Abstract · Added January 20, 2012
Bone marrow-derived stem cells may modulate renal injury, but the effects may depend on the age of the stem cells. Here we investigated whether bone marrow from young mice attenuates renal aging in old mice. We radiated female 12-mo-old 129SvJ mice and reconstituted them with bone marrow cells (BMC) from either 8-wk-old (young-to-old) or 12-mo-old (old-to-old) male mice. Transfer of young BMC resulted in markedly decreased deposition of collagen IV in the mesangium and less β-galactosidase staining, an indicator of cell senescence. These changes paralleled reduced expression of plasminogen activator inhibitor-1 (PAI-1), PDGF-B (PDGF-B), the transdifferentiation marker fibroblast-specific protein-1 (FSP-1), and senescence-associated p16 and p21. Tubulointerstitial and glomerular cells derived from the transplanted BMC did not show β-galactosidase activity, but after 6 mo, there were more FSP-1-expressing bone marrow-derived cells in old-to-old mice compared with young-to-old mice. Young-to-old mice also exhibited higher expression of the anti-aging gene Klotho and less phosphorylation of IGF-1 receptor β. Taken together, these data suggest that young bone marrow-derived cells can alleviate renal aging in old mice. Direct parenchymal reconstitution by stem cells, paracrine effects from adjacent cells, and circulating anti-aging molecules may mediate the aging of the kidney.
2 Communities
1 Members
0 Resources
20 MeSH Terms
Protective roles for fibrin, tissue factor, plasminogen activator inhibitor-1, and thrombin activatable fibrinolysis inhibitor, but not factor XI, during defense against the gram-negative bacterium Yersinia enterocolitica.
Luo D, Szaba FM, Kummer LW, Plow EF, Mackman N, Gailani D, Smiley ST
(2011) J Immunol 187: 1866-76
MeSH Terms: Animals, Carboxypeptidase B2, Factor XI, Fibrin, Humans, Liver, Mice, Mice, Knockout, Sepsis, Serpin E2, Thromboplastin, Yersinia Infections, Yersinia enterocolitica
Show Abstract · Added May 19, 2014
Septic infections dysregulate hemostatic pathways, prompting coagulopathy. Nevertheless, anticoagulant therapies typically fail to protect humans from septic pathology. The data reported in this work may help to explain this discrepancy by demonstrating critical protective roles for coagulation leading to fibrin deposition during host defense against the Gram-negative bacterium Yersinia enterocolitica. After i.p. inoculation with Y. enterocolitica, fibrinogen-deficient mice display impaired cytokine and chemokine production in the peritoneal cavity and suppressed neutrophil recruitment. Moreover, both gene-targeted fibrinogen-deficient mice and wild-type mice treated with the anticoagulant coumadin display increased hepatic bacterial burden and mortality following either i.p. or i.v. inoculation with Y. enterocolitica. Mice with low tissue factor activity succumb to yersiniosis with a phenotype similar to fibrin(ogen)-deficient mice, whereas factor XI-deficient mice show wild-type levels of resistance. Mice deficient in plasminogen activator inhibitor-1 or thrombin-activatable fibrinolysis inhibitor display modest phenotypes, but mice deficient in both plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor succumb to yersiniosis with a phenotype resembling fibrin(ogen)-deficient mice. These findings demonstrate critical protective roles for the tissue factor-dependent extrinsic coagulation pathway during host defense against bacteria and caution that therapeutics targeting major thrombin-generating or antifibrinolytic pathways may disrupt fibrin-mediated host defense during Gram-negative sepsis.
0 Communities
1 Members
0 Resources
13 MeSH Terms