Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 28

Publication Record

Connections

Muscarinic M receptors modulate ethanol seeking in rats.
Berizzi AE, Perry CJ, Shackleford DM, Lindsley CW, Jones CK, Chen NA, Sexton PM, Christopoulos A, Langmead CJ, Lawrence AJ
(2018) Neuropsychopharmacology 43: 1510-1517
MeSH Terms: Animals, Conditioning, Operant, Corpus Striatum, Cues, Drug-Seeking Behavior, Ethanol, Imidazoles, Indoles, Locomotion, Male, Microinjections, Rats, Receptor, Muscarinic M5, Self Administration, Sucrose, Varenicline
Show Abstract · Added March 18, 2020
Despite the cost to both individual and society, alcohol use disorders (AUDs) remain a major health risk within society, and both relapse and heavy drinking are still poorly controlled with current medications. Here we demonstrate for the first time that a centrally active and selective negative allosteric modulator for the rat M muscarinic acetylcholine receptor (mAChR), ML375, decreases ethanol self-administration and attenuates cue-induced reinstatement of ethanol seeking in ethanol-preferring (iP) rats. Importantly, ML375 did not affect sucrose self-administration or general locomotor activity indicative of a selective effect on ethanol seeking. Based on the expression profile of M mAChRs in the brain and the distinct roles different aspects of the dorsal striatum have on long-term and short-term ethanol use, we studied whether intra-striatal microinjection of ML375 modulated ethanol intake in rats. We show in iP rats with an extensive history of ethanol intake that intra-dorsolateral (DL), but not intra-dorsomedial, striatal injections of ML375 reduced ethanol self-administration to a similar extent as the nicotinic acetylcholine receptor ligand varenicline, which has preclinical and clinical efficacy in reducing the reinforcing effects of ethanol. These data implicate the DL striatum as a locus for the effects of cholinergic-acting drugs on ethanol seeking in rats with a history of long-term ethanol use. Accordingly, we demonstrate in rats that selectively targeting the M mAChR can modulate both voluntary ethanol intake and cue-induced ethanol seeking and thereby provide direct evidence that the M mAChR is a potential novel target for pharmacotherapies aimed at treating AUDs.
0 Communities
1 Members
0 Resources
MeSH Terms
Selective inhibition of M muscarinic acetylcholine receptors attenuates cocaine self-administration in rats.
Gunter BW, Gould RW, Bubser M, McGowan KM, Lindsley CW, Jones CK
(2018) Addict Biol 23: 1106-1116
MeSH Terms: Animals, Behavior, Animal, Cocaine, Cocaine-Related Disorders, Conditioning, Operant, Disease Models, Animal, Dopamine Uptake Inhibitors, Dose-Response Relationship, Drug, Male, Mice, Rats, Rats, Sprague-Dawley, Receptor, Muscarinic M5, Reinforcement Schedule, Reward, Self Administration
Show Abstract · Added March 18, 2020
Cocaine use disorder (CUD) remains a debilitating health problem in the United States for which there are no Food and Drug Administration-approved treatment options. Accumulating anatomical and electrophysiological evidence indicates that the muscarinic acetylcholine receptor (mAChR) subtype 5 (M ) plays a critical role in the regulation of the mesolimbic dopaminergic reward circuitry, a major site of action for cocaine and other psychostimulants. In addition, M knockout mice exhibit reduced cocaine self-administration behaviors with no differences in sugar pellet-maintained responding relative to wild-type mice. These findings suggest that selective inhibition of M mAChR may provide a novel pharmacological approach for targeting CUD. Recently, we reported the synthesis and characterization of ML375, a selective negative allosteric modulator (NAM) for the rat and human M mAChR with optimized pharmacokinetic properties for systemic dosing in rodents. In the present study, male Sprague-Dawley rats were trained to self-administer intravenous cocaine (0.1-0.75 mg/kg/infusion) under a 10-response fixed ratio or a progressive ratio schedule of reinforcement. Under both schedules of reinforcement, ML375 produced dose-related reductions in cocaine self-administration. ML375 also modestly reduced sugar pellet-maintained responding on the 10-response, fixed ratio schedule but had no effect under a progressive ratio schedule of reinforcement. Further, ML375 did not affect general motor output as assessed by a rotarod test. Collectively, these results provide the first demonstration that selective inhibition of M using the M NAM ML375 can attenuate both the reinforcing effects and the relative strength of cocaine and suggest that M NAMs may represent a promising, novel treatment approach for CUD.
© 2017 Society for the Study of Addiction.
0 Communities
1 Members
0 Resources
MeSH Terms
Partial mGlu₅ Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects.
Gould RW, Amato RJ, Bubser M, Joffe ME, Nedelcovych MT, Thompson AD, Nickols HH, Yuh JP, Zhan X, Felts AS, Rodriguez AL, Morrison RD, Byers FW, Rook JM, Daniels JS, Niswender CM, Conn PJ, Emmitte KA, Lindsley CW, Jones CK
(2016) Neuropsychopharmacology 41: 1166-78
MeSH Terms: Alkynes, Allosteric Regulation, Animals, Anti-Anxiety Agents, Antidepressive Agents, Brain, Cocaine, Conditioning, Classical, Conditioning, Operant, Dose-Response Relationship, Drug, Drug-Seeking Behavior, Male, Mice, Motor Activity, Phencyclidine, Pyridines, Rats, Sprague-Dawley, Receptor, Metabotropic Glutamate 5, Self Administration, Thiazoles
Show Abstract · Added February 18, 2016
Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index.
0 Communities
4 Members
0 Resources
20 MeSH Terms
PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission.
de Guglielmo G, Melis M, De Luca MA, Kallupi M, Li HW, Niswender K, Giordano A, Senzacqua M, Somaini L, Cippitelli A, Gaitanaris G, Demopulos G, Damadzic R, Tapocik J, Heilig M, Ciccocioppo R
(2015) Neuropsychopharmacology 40: 927-37
MeSH Terms: Anilides, Animals, Conditioning, Operant, Dopamine, Dopaminergic Neurons, Heroin, Hypoglycemic Agents, Male, Mice, Transgenic, Morphine, Narcotics, Nucleus Accumbens, PPAR gamma, Pioglitazone, Prefrontal Cortex, Rats, Rats, Wistar, Self Administration, Synaptic Transmission, Thiazolidinediones, Time Factors, Ventral Tegmental Area, gamma-Aminobutyric Acid
Show Abstract · Added February 19, 2015
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
0 Communities
1 Members
0 Resources
23 MeSH Terms
A shift in the role of glutamatergic signaling in the nucleus accumbens core with the development of an addicted phenotype.
Doyle SE, Ramôa C, Garber G, Newman J, Toor Z, Lynch WJ
(2014) Biol Psychiatry 76: 810-5
MeSH Terms: 6-Cyano-7-nitroquinoxaline-2,3-dione, Animals, Cocaine, Cocaine-Related Disorders, Conditioning, Operant, Excitatory Amino Acid Antagonists, Extinction, Psychological, Female, Glutamic Acid, Male, Motivation, Nucleus Accumbens, Phenotype, Rats, Rats, Sprague-Dawley, Receptors, AMPA, Receptors, Kainic Acid, Reinforcement Schedule, Self Administration
Show Abstract · Added March 20, 2014
BACKGROUND - While dopamine signaling in the nucleus accumbens (NAc) plays a well-established role in motivating cocaine use in early nonaddicted stages, recent evidence suggests that other signaling pathways may be critical once addiction has developed. Given the importance of glutamatergic signaling in the NAc for drug seeking and relapse, here we examined its role in motivating cocaine self-administration under conditions known to produce either a nonaddicted or an addicted phenotype.
METHODS - Following acquisition, male and female Sprague Dawley rats were given either short access (three fixed-ratio 1 sessions, 20 infusions/day) or extended 24-hour access (10 days; 4 trials/hour; up to 96 infusions/day) to cocaine. Following a 14-day abstinence period, motivation for cocaine was assessed under a progressive-ratio schedule, and once stable, the effects of intra-NAc infusions of the glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor antagonist CNQX (0, .01, .03, .1 μg/side) were determined. As an additional measure for the development of an addicted phenotype, separate groups of rats were screened under an extinction/cue-induced reinstatement procedure following abstinence from short-access versus extended-access self-administration.
RESULTS - Motivation for cocaine and levels of extinction and reinstatement responding were markedly higher following extended-access versus short-access self-administration, confirming the development of an addicted phenotype in the extended-access group. CNQX dose-dependently reduced motivation for cocaine in the extended-access group but was without effect in the short-access group.
CONCLUSIONS - These results suggest that the role of glutamatergic signaling in the NAc, though not essential for motivating cocaine use in nonaddicted stages, becomes critical once addiction has developed.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked phenotypes that precipitate relapse-like behaviors in cocaine dependence.
Anastasio NC, Stutz SJ, Fox RG, Sears RM, Emeson RB, DiLeone RJ, O'Neil RT, Fink LH, Li D, Green TA, Moeller FG, Cunningham KA
(2014) Neuropsychopharmacology 39: 370-82
MeSH Terms: Animals, Behavior, Animal, Cocaine-Related Disorders, Male, Phenotype, Prefrontal Cortex, Rats, Rats, Sprague-Dawley, Receptor, Serotonin, 5-HT2C, Recurrence, Self Administration
Show Abstract · Added May 28, 2014
Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues ('cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Paradoxical tolerance to cocaine after initial supersensitivity in drug-use-prone animals.
Ferris MJ, Calipari ES, Melchior JR, Roberts DC, España RA, Jones SR
(2013) Eur J Neurosci 38: 2628-36
MeSH Terms: Animals, Cocaine, Dopamine, Dopamine Uptake Inhibitors, Drug Tolerance, Electrochemical Techniques, Exploratory Behavior, Male, Rats, Rats, Sprague-Dawley, Self Administration
Show Abstract · Added March 30, 2020
There is great interest in outlining biological factors and behavioral characteristics that either predispose or predict vulnerability to substance use disorders. Response to an inescapable novel environment has been shown to predict a "drug-use-prone" phenotype that is defined by rapid acquisition of cocaine self-administration. Here, we showed that response to novelty can also predict the neurochemical and behavioral effects of acute and repeated cocaine in rats. We used cocaine self-administration under a fixed-ratio 1 schedule followed by fast-scan cyclic voltammetry in brain slices to measure subsecond dopamine (DA) release and uptake parameters in drug-use-prone and -resistant phenotypes. Despite no significant differences in stimulated release and uptake, animals with high responses to a novel environment had DA transporters that were more sensitive to cocaine-induced uptake inhibition, which corresponded to greater locomotor activating effects of cocaine. These animals also acquired cocaine self-administration more rapidly and, after 5 days of extended access cocaine self-administration, high-responding animals showed robust tolerance to DA uptake inhibition by cocaine. The effects of cocaine remained unchanged in animals with low novelty responses. Similarly, the rate of acquisition was negatively correlated with DA uptake inhibition by cocaine after self-administration. Thus, we showed that tolerance to the cocaine-induced inhibition of DA uptake coexists with a behavioral phenotype that is defined by increased preoccupation with cocaine as measured by rapid acquisition and early high intake.
© 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
MeSH Terms
Methylphenidate and cocaine self-administration produce distinct dopamine terminal alterations.
Calipari ES, Ferris MJ, Melchior JR, Bermejo K, Salahpour A, Roberts DC, Jones SR
(2014) Addict Biol 19: 145-55
MeSH Terms: Animals, Blotting, Western, Central Nervous System Stimulants, Cocaine, Dopamine, Dopamine Plasma Membrane Transport Proteins, Dopamine Uptake Inhibitors, Electrochemical Techniques, Male, Methylphenidate, Nucleus Accumbens, Phosphorylation, Polymerase Chain Reaction, Rats, Rats, Sprague-Dawley, Reinforcement, Psychology, Self Administration, Tyrosine 3-Monooxygenase
Show Abstract · Added March 30, 2020
Methylphenidate (MPH) is a commonly abused psychostimulant prescribed for the treatment of attention deficit hyperactivity disorder. MPH has a mechanism of action similar to cocaine (COC) and is commonly characterized as a dopamine transporter (DAT) blocker. While there has been extensive work aimed at understanding dopamine (DA) nerve terminal changes following COC self-administration, very little is known about the effects of MPH self-administration on the DA system. We used fast scan cyclic voltammetry in nucleus accumbens core slices from animals with a 5-day self-administration history of 40 injections/day of either MPH (0.56 mg/kg) or COC (1.5 mg/kg) to explore alterations in baseline DA release and uptake kinetics as well as alterations in the interaction of each compound with the DAT. Although MPH and COC have similar behavioral effects, the consequences of self-administration on DA system parameters were found to be divergent. We show that COC self-administration reduced DAT levels and maximal rates of DA uptake, as well as reducing electrically stimulated release, suggesting decreased DA terminal function. In contrast, MPH self-administration increased DAT levels, DA uptake rates and DA release, suggesting enhanced terminal function, which was supported by findings of increased metabolite/DA tissue content ratios. Tyrosine hydroxylase messenger RNA, protein and phosphorylation levels were also assessed in both groups. Additionally, COC self-administration reduced COC-induced DAT inhibition, while MPH self-administration increased MPH-induced DAT inhibition, suggesting opposite pharmacodynamic effects of these two drugs. These findings suggest that the factors governing DA system adaptations are more complicated than simple DA uptake blockade.
© 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.
0 Communities
1 Members
0 Resources
MeSH Terms
Cocaine self-administration produces pharmacodynamic tolerance: differential effects on the potency of dopamine transporter blockers, releasers, and methylphenidate.
Ferris MJ, Calipari ES, Mateo Y, Melchior JR, Roberts DC, Jones SR
(2012) Neuropsychopharmacology 37: 1708-16
MeSH Terms: Animals, Bupropion, Cocaine, Dopamine, Dopamine Plasma Membrane Transport Proteins, Dopamine Uptake Inhibitors, Dose-Response Relationship, Drug, Drug Tolerance, Male, Methylphenidate, Nomifensine, Rats, Rats, Sprague-Dawley, Self Administration
Show Abstract · Added March 30, 2020
The dopamine transporter (DAT) is the primary site of action for psychostimulant drugs such as cocaine, methylphenidate, and amphetamine. Our previous work demonstrated a reduced ability of cocaine to inhibit the DAT following high-dose cocaine self-administration (SA), corresponding to a reduced ability of cocaine to increase extracellular dopamine. However, this effect had only been demonstrated for cocaine. Thus, the current investigations sought to understand the extent to which cocaine SA (1.5 mg/kg/inf × 40 inf/day × 5 days) altered the ability of different dopamine uptake blockers and releasers to inhibit dopamine uptake, measured using fast-scan cyclic voltammetry in rat brain slices. We demonstrated that, similar to cocaine, the DAT blockers nomifensine and bupropion were less effective at inhibiting dopamine uptake following cocaine SA. The potencies of amphetamine-like dopamine releasers such as 3,4-methylenedioxymethamphetamine, methamphetamine, amphetamine, and phentermine, as well as a non-amphetamine releaser, 4-benzylpiperidine, were all unaffected. Finally, methylphenidate, which blocks dopamine uptake like cocaine while being structurally similar to amphetamine, shared characteristics of both, resembling an uptake blocker at low concentrations and a releaser at high concentrations. Combined, these experiments demonstrate that after high-dose cocaine SA, there is cross-tolerance of the DAT to other uptake blockers, but not releasers. The reduced ability of psychostimulants to inhibit dopamine uptake following cocaine SA appears to be contingent upon their functional interaction with the DAT as a pure blocker or releaser rather than their structural similarity to cocaine. Further, methylphenidate's interaction with the DAT is unique and concentration-dependent.
0 Communities
1 Members
0 Resources
MeSH Terms
Three months of rifapentine and isoniazid for latent tuberculosis infection.
Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E, Hackman J, Hamilton CD, Menzies D, Kerrigan A, Weis SE, Weiner M, Wing D, Conde MB, Bozeman L, Horsburgh CR, Chaisson RE, TB Trials Consortium PREVENT TB Study Team
(2011) N Engl J Med 365: 2155-66
MeSH Terms: Adult, Antitubercular Agents, Directly Observed Therapy, Drug Administration Schedule, Drug Therapy, Combination, Follow-Up Studies, Humans, Intention to Treat Analysis, Isoniazid, Male, Middle Aged, Prospective Studies, Rifampin, Risk Factors, Self Administration, Tuberculosis, Virus Latency
Show Abstract · Added May 29, 2014
BACKGROUND - Treatment of latent Mycobacterium tuberculosis infection is an essential component of tuberculosis control and elimination. The current standard regimen of isoniazid for 9 months is efficacious but is limited by toxicity and low rates of treatment completion.
METHODS - We conducted an open-label, randomized noninferiority trial comparing 3 months of directly observed once-weekly therapy with rifapentine (900 mg) plus isoniazid (900 mg) (combination-therapy group) with 9 months of self-administered daily isoniazid (300 mg) (isoniazid-only group) in subjects at high risk for tuberculosis. Subjects were enrolled from the United States, Canada, Brazil, and Spain and followed for 33 months. The primary end point was confirmed tuberculosis, and the noninferiority margin was 0.75%.
RESULTS - In the modified intention-to-treat analysis, tuberculosis developed in 7 of 3986 subjects in the combination-therapy group (cumulative rate, 0.19%) and in 15 of 3745 subjects in the isoniazid-only group (cumulative rate, 0.43%), for a difference of 0.24 percentage points. Rates of treatment completion were 82.1% in the combination-therapy group and 69.0% in the isoniazid-only group (P<0.001). Rates of permanent drug discontinuation owing to an adverse event were 4.9% in the combination-therapy group and 3.7% in the isoniazid-only group (P=0.009). Rates of investigator-assessed drug-related hepatotoxicity were 0.4% and 2.7%, respectively (P<0.001).
CONCLUSIONS - The use of rifapentine plus isoniazid for 3 months was as effective as 9 months of isoniazid alone in preventing tuberculosis and had a higher treatment-completion rate. Long-term safety monitoring will be important. (Funded by the Centers for Disease Control and Prevention; PREVENT TB ClinicalTrials.gov number, NCT00023452.).
0 Communities
1 Members
0 Resources
17 MeSH Terms