Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 37

Publication Record

Connections

The Impact of Natural Selection on the Evolution and Function of Placentally Expressed Galectins.
Ely ZA, Moon JM, Sliwoski GR, Sangha AK, Shen XX, Labella AL, Meiler J, Capra JA, Rokas A
(2019) Genome Biol Evol 11: 2574-2592
MeSH Terms: Animals, Biological Evolution, Eutheria, Evolution, Molecular, Female, Galectins, Haplotypes, Humans, Models, Molecular, Phylogeny, Placenta, Polymorphism, Single Nucleotide, Pregnancy, Selection, Genetic
Show Abstract · Added March 3, 2020
Immunity genes have repeatedly experienced natural selection during mammalian evolution. Galectins are carbohydrate-binding proteins that regulate diverse immune responses, including maternal-fetal immune tolerance in placental pregnancy. Seven human galectins, four conserved across vertebrates and three specific to primates, are involved in placental development. To comprehensively study the molecular evolution of these galectins, both across mammals and within humans, we conducted a series of between- and within-species evolutionary analyses. By examining patterns of sequence evolution between species, we found that primate-specific galectins showed uniformly high substitution rates, whereas two of the four other galectins experienced accelerated evolution in primates. By examining human population genomic variation, we found that galectin genes and variants, including variants previously linked to immune diseases, showed signatures of recent positive selection in specific human populations. By examining one nonsynonymous variant in Galectin-8 previously associated with autoimmune diseases, we further discovered that it is tightly linked to three other nonsynonymous variants; surprisingly, the global frequency of this four-variant haplotype is ∼50%. To begin understanding the impact of this major haplotype on Galectin-8 protein structure, we modeled its 3D protein structure and found that it differed substantially from the reference protein structure. These results suggest that placentally expressed galectins experienced both ancient and more recent selection in a lineage- and population-specific manner. Furthermore, our discovery that the major Galectin-8 haplotype is structurally distinct from and more commonly found than the reference haplotype illustrates the significance of understanding the evolutionary processes that sculpted variants associated with human genetic disease.
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Immune Regulation in Eutherian Pregnancy: Live Birth Coevolved with Novel Immune Genes and Gene Regulation.
Moon JM, Capra JA, Abbot P, Rokas A
(2019) Bioessays 41: e1900072
MeSH Terms: Animals, Biological Evolution, Eutheria, Female, Gene Duplication, Gene Expression Regulation, Genetic Variation, Haplotypes, Humans, Live Birth, Pregnancy, Pregnancy, Animal, Regulatory Sequences, Nucleic Acid, Retroviridae, Selection, Genetic
Show Abstract · Added March 3, 2020
Novel regulatory elements that enabled expression of pre-existing immune genes in reproductive tissues and novel immune genes with pregnancy-specific roles in eutherians have shaped the evolution of mammalian pregnancy by facilitating the emergence of novel mechanisms for immune regulation over its course. Trade-offs arising from conflicting fitness effects on reproduction and host defenses have further influenced the patterns of genetic variation of these genes. These three mechanisms (novel regulatory elements, novel immune genes, and trade-offs) played a pivotal role in refining the regulation of maternal immune systems during pregnancy in eutherians, likely facilitating the establishment of prolonged direct maternal-fetal contact in eutherians without causing immunological rejection of the genetically distinct fetus.
© 2019 WILEY Periodicals, Inc.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Signatures of Recent Positive Selection in Enhancers Across 41 Human Tissues.
Moon JM, Capra JA, Abbot P, Rokas A
(2019) G3 (Bethesda) 9: 2761-2774
MeSH Terms: DNA Transposable Elements, Databases, Genetic, Enhancer Elements, Genetic, Evolution, Molecular, Genome-Wide Association Study, Genomics, Humans, Immunity, Organ Specificity, Quantitative Trait, Heritable, Selection, Genetic
Show Abstract · Added March 3, 2020
Evolutionary changes in enhancers are widely associated with variation in human traits and diseases. However, studies comprehensively quantifying levels of selection on enhancers at multiple evolutionary periods during recent human evolution and how enhancer evolution varies across human tissues are lacking. To address these questions, we integrated a dataset of 41,561 transcribed enhancers active in 41 different human tissues (FANTOM Consortium) with whole genome sequences of 1,668 individuals from the African, Asian, and European populations (1000 Genomes Project). Our analyses based on four different metrics (Tajima's , , H12, ) showed that ∼5.90% of enhancers showed evidence of recent positive selection and that genes associated with enhancers under very recent positive selection are enriched for diverse immune-related functions. The distributions of these metrics for brain and testis enhancers were often statistically significantly different and in the direction suggestive of less positive selection compared to those of other tissues; the same was true for brain and testis enhancers that are tissue-specific compared to those that are tissue-broad and for testis enhancers associated with tissue-enriched and non-tissue-enriched genes. These differences varied considerably across metrics and tissues and were generally in the form of changes in distributions' shapes rather than shifts in their values. Collectively, these results suggest that many human enhancers experienced recent positive selection throughout multiple time periods in human evolutionary history, that this selection occurred in a tissue-dependent and immune-related functional context, and that much like the evolution of their protein-coding gene counterparts, the evolution of brain and testis enhancers has been markedly different from that of enhancers in other tissues.
Copyright © 2019 Moon et al.
0 Communities
1 Members
0 Resources
MeSH Terms
Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology.
Moon JM, Aronoff DM, Capra JA, Abbot P, Rokas A
(2018) G3 (Bethesda) 8: 1315-1325
MeSH Terms: Genetic Variation, Humans, N-Acetylneuraminic Acid, Nucleotides, Selection, Genetic
Show Abstract · Added March 14, 2018
Sialic acids are nine carbon sugars ubiquitously found on the surfaces of vertebrate cells and are involved in various immune response-related processes. In humans, at least 58 genes spanning diverse functions, from biosynthesis and activation to recycling and degradation, are involved in sialic acid biology. Because of their role in immunity, sialic acid biology genes have been hypothesized to exhibit elevated rates of evolutionary change. Consistent with this hypothesis, several genes involved in sialic acid biology have experienced higher rates of non-synonymous substitutions in the human lineage than their counterparts in other great apes, perhaps in response to ancient pathogens that infected hominins millions of years ago (paleopathogens). To test whether sialic acid biology genes have also experienced more recent positive selection during the evolution of the modern human lineage, reflecting adaptation to contemporary cosmopolitan or geographically-restricted pathogens, we examined whether their protein-coding regions showed evidence of recent hard and soft selective sweeps. This examination involved the calculation of four measures that quantify changes in allele frequency spectra, extent of population differentiation, and haplotype homozygosity caused by recent hard and soft selective sweeps for 55 sialic acid biology genes using publicly available whole genome sequencing data from 1,668 humans from three ethnic groups. To disentangle evidence for selection from confounding demographic effects, we compared the observed patterns in sialic acid biology genes to simulated sequences of the same length under a model of neutral evolution that takes into account human demographic history. We found that the patterns of genetic variation of most sialic acid biology genes did not significantly deviate from neutral expectations and were not significantly different among genes belonging to different functional categories. Those few sialic acid biology genes that significantly deviated from neutrality either experienced soft sweeps or population-specific hard sweeps. Interestingly, while most hard sweeps occurred on genes involved in sialic acid recognition, most soft sweeps involved genes associated with recycling, degradation and activation, transport, and transfer functions. We propose that the lack of signatures of recent positive selection for the majority of the sialic acid biology genes is consistent with the view that these genes regulate immune responses against ancient rather than contemporary cosmopolitan or geographically restricted pathogens.
Copyright © 2018 Moon et al.
0 Communities
2 Members
0 Resources
5 MeSH Terms
Identifying -mediators for -eQTLs across many human tissues using genomic mediation analysis.
Yang F, Wang J, GTEx Consortium, Pierce BL, Chen LS
(2017) Genome Res 27: 1859-1871
MeSH Terms: Databases, Genetic, Gene Expression Profiling, Gene Expression Regulation, Gene Regulatory Networks, Genetic Predisposition to Disease, Genome-Wide Association Study, Genomics, Humans, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Selection, Genetic, Tissue Distribution
Show Abstract · Added November 29, 2017
The impact of inherited genetic variation on gene expression in humans is well-established. The majority of known expression quantitative trait loci (eQTLs) impact expression of local genes (-eQTLs). More research is needed to identify effects of genetic variation on distant genes (-eQTLs) and understand their biological mechanisms. One common -eQTLs mechanism is "mediation" by a local () transcript. Thus, mediation analysis can be applied to genome-wide SNP and expression data in order to identify transcripts that are "-mediators" of -eQTLs, including those "-hubs" involved in regulation of many -genes. Identifying such mediators helps us understand regulatory networks and suggests biological mechanisms underlying -eQTLs, both of which are relevant for understanding susceptibility to complex diseases. The multitissue expression data from the Genotype-Tissue Expression (GTEx) program provides a unique opportunity to study -mediation across human tissue types. However, the presence of complex hidden confounding effects in biological systems can make mediation analyses challenging and prone to confounding bias, particularly when conducted among diverse samples. To address this problem, we propose a new method: Genomic Mediation analysis with Adaptive Confounding adjustment (GMAC). It enables the search of a very large pool of variables, and adaptively selects potential confounding variables for each mediation test. Analyses of simulated data and GTEx data demonstrate that the adaptive selection of confounders by GMAC improves the power and precision of mediation analysis. Application of GMAC to GTEx data provides new insights into the observed patterns of -hubs and -eQTL regulation across tissue types.
© 2017 Yang et al.; Published by Cold Spring Harbor Laboratory Press.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Evidence of selection as a cause for racial disparities in fibroproliferative disease.
Hellwege JN, Torstenson ES, Russell SB, Edwards TL, Velez Edwards DR
(2017) PLoS One 12: e0182791
MeSH Terms: African Continental Ancestry Group, Connective Tissue Diseases, Databases, Genetic, European Continental Ancestry Group, Female, Gene Frequency, Genetic Predisposition to Disease, Humans, Linkage Disequilibrium, Models, Genetic, Neoplasms, Connective and Soft Tissue, Polymorphism, Single Nucleotide, Prevalence, Quantitative Trait Loci, Risk Assessment, Selection, Genetic
Show Abstract · Added March 3, 2020
Fibroproliferative diseases are common complex traits featuring scarring and overgrowth of connective tissue which vary widely in presentation because they affect many organ systems. Most fibroproliferative diseases are more prevalent in African-derived populations than in European populations, leading to pronounced health disparities. It is hypothesized that the increased prevalence of these diseases in African-derived populations is due to selection for pro-fibrotic alleles that are protective against helminth infections. We constructed a genetic risk score (GRS) of fibroproliferative disease risk-increasing alleles using 147 linkage disequilibrium-pruned variants identified through genome-wide association studies of seven fibroproliferative diseases with large African-European prevalence disparities. A comparison of the fibroproliferative disease GRS between 1000 Genomes Phase 3 populations detected a higher mean GRS in AFR (mean = 148 risk alleles) than EUR (mean = 136 risk alleles; T-test p-value = 1.75x10-123). To test whether differences in GRS burden are systematic and may be due to selection, we employed the quantitative trait loci (QTL) sign test. The QTL sign test result indicates that population differences in risk-increasing allele burdens at these fibroproliferative disease variants are systematic and support a model featuring selective pressure (p-value = 0.011). These observations were replicated in an independent sample and were more statistically significant (T-test p-value = 7.26x10-237, sign test p-value = 0.015). This evidence supports the role of selective pressure acting to increase frequency of fibroproliferative alleles in populations of African relative to European ancestry populations.
0 Communities
1 Members
0 Resources
MeSH Terms
Evidence of selection on splicing-associated loci in human populations and relevance to disease loci mapping.
Gamazon ER, Konkashbaev A, Derks EM, Cox NJ, Lee Y
(2017) Sci Rep 7: 5980
MeSH Terms: Chromosome Mapping, Disease, Genetic Loci, Genetics, Population, Genome-Wide Association Study, Humans, Introns, Nucleotide Motifs, Polymorphism, Single Nucleotide, RNA Splicing, Selection, Genetic
Show Abstract · Added October 27, 2017
We performed a whole-genome scan of genetic variants in splicing regulatory elements (SREs) and evaluated the extent to which natural selection has shaped extant patterns of variation in SREs. We investigated the degree of differentiation of single nucleotide polymorphisms (SNPs) in SREs among human populations and applied long-range haplotype- and multilocus allelic differentiation-based methods to detect selection signatures. We describe an approach, sampling a large number of loci across the genome from functional classes and using the consensus from multiple tests, for identifying candidates for selection signals. SRE SNPs in various SNP functional classes show different patterns of population differentiation compared with their non-SRE counterparts. Intronic regions display a greater enrichment for extreme population differentiation among the potentially tissue-dependent transcript ratio quantitative trait loci (trQTLs) than SRE SNPs in general and includ outlier trQTLs for cross-population composite likelihood ratio, suggesting that incorporation of context annotation for regulatory variation may lead to improved detection of signature of selection on these loci. The proportion of extremely rare SNPs disrupting SREs is significantly higher in European than in African samples. The approach developed here will be broadly useful for studies of function and disease-associated variation in the human genome.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Genomic Characterization of Esophageal Squamous Cell Carcinoma Reveals Critical Genes Underlying Tumorigenesis and Poor Prognosis.
Qin HD, Liao XY, Chen YB, Huang SY, Xue WQ, Li FF, Ge XS, Liu DQ, Cai Q, Long J, Li XZ, Hu YZ, Zhang SD, Zhang LJ, Lehrman B, Scott AF, Lin D, Zeng YX, Shugart YY, Jia WH
(2016) Am J Hum Genet 98: 709-27
MeSH Terms: Adult, Aged, Aged, 80 and over, Animals, Carcinogenesis, Carcinoma, Squamous Cell, Carrier Proteins, Cell Cycle Proteins, Cell Line, Tumor, Cell Proliferation, DNA Copy Number Variations, Esophageal Neoplasms, Esophageal Squamous Cell Carcinoma, Exome, Fas-Associated Death Domain Protein, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Genetic Association Studies, Humans, Male, Membrane Proteins, Mice, Mice, Inbred BALB C, MicroRNAs, Middle Aged, Mutation, Nerve Tissue Proteins, Prognosis, Selection, Genetic, Trans-Activators, Xenograft Model Antitumor Assays
Show Abstract · Added April 3, 2018
The genetic mechanisms underlying the poor prognosis of esophageal squamous cell carcinoma (ESCC) are not well understood. Here, we report somatic mutations found in ESCC from sequencing 10 whole-genome and 57 whole-exome matched tumor-normal sample pairs. Among the identified genes, we characterized mutations in VANGL1 and showed that they accelerated cell growth in vitro. We also found that five other genes, including three coding genes (SHANK2, MYBL2, FADD) and two non-coding genes (miR-4707-5p, PCAT1), were involved in somatic copy-number alterations (SCNAs) or structural variants (SVs). A survival analysis based on the expression profiles of 321 individuals with ESCC indicated that these genes were significantly associated with poorer survival. Subsequently, we performed functional studies, which showed that miR-4707-5p and MYBL2 promoted proliferation and metastasis. Together, our results shed light on somatic mutations and genomic events that contribute to ESCC tumorigenesis and prognosis and might suggest therapeutic targets.
Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
32 MeSH Terms
A Genome-Scale Investigation of Incongruence in Culicidae Mosquitoes.
Wang Y, Zhou X, Yang D, Rokas A
(2015) Genome Biol Evol 7: 3463-71
MeSH Terms: Animals, Anopheles, Genome, Insect, Phylogeny, Selection, Genetic
Show Abstract · Added February 22, 2016
Comparison of individual gene trees in several recent phylogenomic studies from diverse lineages has revealed a surprising amount of topological conflict or incongruence, but we still know relatively little about its distribution across the tree of life. To further our understanding of incongruence, the factors that contribute to it and how it can be ameliorated, we examined its distribution in a clade of 20 Culicidae mosquito species through the reconstruction and analysis of the phylogenetic histories of 2,007 groups of orthologous genes. Levels of incongruence were generally low, the three exceptions being the internodes concerned with the branching of Anopheles christyi, with the branching of the subgenus Anopheles as well as the already reported incongruence within the Anopheles gambiae species complex. Two of these incongruence events (A. gambiae species complex and A. christyi) are likely due to biological factors, whereas the third (subgenus Anopheles) is likely due to analytical factors. Similar to previous studies, the use of genes or internodes with high bootstrap support or internode certainty values, both of which were positively correlated with gene alignment length, substantially reduced the observed incongruence. However, the clade support values of the internodes concerned with the branching of the subgenus Anopheles as well as within the A. gambiae species complex remained very low. Based on these results, we infer that the prevalence of incongruence in Culicidae mosquitoes is generally low, that it likely stems from both analytical and biological factors, and that it can be ameliorated through the selection of genes with strong phylogenetic signal. More generally, selection of genes with strong phylogenetic signal may be a general empirical solution for reducing incongruence and increasing the robustness of inference in phylogenomic studies.
© The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
0 Communities
2 Members
0 Resources
5 MeSH Terms
The evolution of the human genome.
Simonti CN, Capra JA
(2015) Curr Opin Genet Dev 35: 9-15
MeSH Terms: Biological Evolution, Evolution, Molecular, Gene Expression Regulation, Genetic Variation, Genetics, Population, Genome, Human, Humans, Regulatory Sequences, Nucleic Acid, Selection, Genetic
Show Abstract · Added April 29, 2016
Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick.
Copyright © 2015 Elsevier Ltd. All rights reserved.
1 Communities
1 Members
0 Resources
9 MeSH Terms