Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 17

Publication Record

Connections

White matter volume and white/gray matter ratio in mammalian species as a consequence of the universal scaling of cortical folding.
Mota B, Dos Santos SE, Ventura-Antunes L, Jardim-Messeder D, Neves K, Kazu RS, Noctor S, Lambert K, Bertelsen MF, Manger PR, Sherwood CC, Kaas JH, Herculano-Houzel S
(2019) Proc Natl Acad Sci U S A 116: 15253-15261
MeSH Terms: Animals, Artiodactyla, Cerebral Cortex, Connectome, Gray Matter, Humans, Neurons, Organ Size, Organ Specificity, Primates, Rodentia, Scandentia, White Matter
Show Abstract · Added March 30, 2020
Because the white matter of the cerebral cortex contains axons that connect distant neurons in the cortical gray matter, the relationship between the volumes of the 2 cortical compartments is key for information transmission in the brain. It has been suggested that the volume of the white matter scales universally as a function of the volume of the gray matter across mammalian species, as would be expected if a global principle of wiring minimization applied. Using a systematic analysis across several mammalian clades, here we show that the volume of the white matter does not scale universally with the volume of the gray matter across mammals and is not optimized for wiring minimization. Instead, the ratio between volumes of gray and white matter is universally predicted by the same equation that predicts the degree of folding of the cerebral cortex, given the clade-specific scaling of cortical thickness, such that the volume of the gray matter (or the ratio of gray to total cortical volumes) divided by the square root of cortical thickness is a universal function of total cortical volume, regardless of the number of cortical neurons. Thus, the very mechanism that we propose to generate cortical folding also results in compactness of the white matter to a predictable degree across a wide variety of mammalian species.
0 Communities
1 Members
0 Resources
MeSH Terms
Mutual activation of glutamatergic mGlu and muscarinic M receptors reverses schizophrenia-related changes in rodents.
Cieślik P, Woźniak M, Rook JM, Tantawy MN, Conn PJ, Acher F, Tokarski K, Kusek M, Pilc A, Wierońska JM
(2018) Psychopharmacology (Berl) 235: 2897-2913
MeSH Terms: Amphetamine, Animals, Antipsychotic Agents, Disease Models, Animal, Dizocilpine Maleate, Dose-Response Relationship, Drug, Excitatory Amino Acid Agonists, Male, Mice, Motor Activity, Phosphinic Acids, Receptor, Muscarinic M4, Receptors, Metabotropic Glutamate, Rodentia, Schizophrenia
Show Abstract · Added April 11, 2019
RATIONALE - Metabotropic glutamate receptors and muscarinic M receptors have been proposed as novel targets for various brain disorders, including schizophrenia. Both receptors are coupled to G proteins and are expressed in brain circuits that are important in schizophrenia. Therefore, their mutual activation may be an effective treatment and allow minimizing the doses of ligands required for optimal activity.
OBJECTIVES - In the present studies, subactive doses of mGlu and M activators (LSP4-2022 and VU152100, respectively) were administered to investigate the mutual interaction between mGlu and M receptors in animal models of schizophrenia.
METHODS - The behavioral tests used were MK-801-induced hyperactivity, (±)-2.5-dimethoxy-4-iodoamphetamine hydrochloride (DOI)-induced head twitches, the modified forced swim test, and MK-801-induced disruptions of social interactions and novel object recognition. DOI-induced spontaneous excitatory postsynaptic currents (sEPSCs) in brain slices and positron emission tomography (PET) in were used to establish the ability of these compounds to modulate the glutamatergic and dopaminergic systems. Rotarod was used to assess putative adverse effects.
RESULTS - The mutual administration of subactive doses of LSP4-2022 and VU152100 exerted similar antipsychotic-like efficacy in animals as observed for active doses of both compounds, indicating their additive actions. VU152100 inhibited the DOI-induced frequency (but not amplitude) of sEPSCs in the frontal cortex, confirming presynaptic regulation of glutamate release. Both compounds reversed amphetamine-induced decrease in D receptor levels in the striatum, as measured with [F]fallypride. The compounds did not induce any motor impartments when measured in rotarod test.
CONCLUSIONS - Based on our results, the simultaneous activation of M and mGlu receptors is beneficial in reversing MK-801- and amphetamine-induced schizophrenia-related changes in animals.
0 Communities
2 Members
0 Resources
MeSH Terms
Transcriptional profiling of the ductus arteriosus: Comparison of rodent microarrays and human RNA sequencing.
Yarboro MT, Durbin MD, Herington JL, Shelton EL, Zhang T, Ebby CG, Stoller JZ, Clyman RI, Reese J
(2018) Semin Perinatol 42: 212-220
MeSH Terms: Animals, Animals, Newborn, Ductus Arteriosus, Embryo, Mammalian, Gene Expression Profiling, Gene Expression Regulation, Developmental, Genetic Association Studies, Humans, Microarray Analysis, Models, Animal, Rodentia, Sequence Analysis, RNA, Species Specificity, Vascular Patency
Show Abstract · Added November 26, 2018
DA closure is crucial for the transition from fetal to neonatal life. This closure is supported by changes to the DA's signaling and structural properties that distinguish it from neighboring vessels. Examining transcriptional differences between these vessels is key to identifying genes or pathways responsible for DA closure. Several microarray studies have explored the DA transcriptome in animal models but varied experimental designs have led to conflicting results. Thorough transcriptomic analysis of the human DA has yet to be performed. A clear picture of the DA transcriptome is key to guiding future research endeavors, both to allow more targeted treatments in the clinical setting, and to understand the basic biology of DA function. In this review, we use a cross-species cross-platform analysis to consider all available published rodent microarray data and novel human RNAseq data in order to provide high priority candidate genes for consideration in future DA studies.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Imaging MS of Rodent Ocular Tissues and the Optic Nerve.
Anderson DMG, Lambert W, Calkins DJ, Ablonczy Z, Crouch RK, Caprioli RM, Schey KL
(2017) Methods Mol Biol 1618: 15-27
MeSH Terms: Animals, Eye, Optic Nerve, Rodentia, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Vision Disorders
Show Abstract · Added March 22, 2018
The visual system is comprised of many specialized cell types that are essential for relaying sensory information about an animal's surroundings to the brain. The cells present in ocular tissue are notoriously delicate, making it particularly challenging to section thin slices of unfixed tissue. Maintaining the morphology of the native tissue is crucial for accurate observations by either conventional staining techniques or in this instance matrix-assisted laser desorption ionization (MALDI IMS) or imaging using mass spectrometry. As vision loss is a significantly debilitating condition, studying molecular mechanisms involved in the process of vision loss is a critically important area of research.
0 Communities
2 Members
0 Resources
6 MeSH Terms
Bile acids and bariatric surgery.
Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR
(2017) Mol Aspects Med 56: 75-89
MeSH Terms: Animals, Bile Acids and Salts, Diabetes Mellitus, Type 2, Enterohepatic Circulation, Gastrectomy, Gastric Bypass, Gastrointestinal Microbiome, Gene Expression Regulation, Glucose, Homeostasis, Humans, Insulin Resistance, Obesity, Morbid, Receptors, Cytoplasmic and Nuclear, Receptors, G-Protein-Coupled, Rodentia, Signal Transduction
Show Abstract · Added June 6, 2017
Bariatric surgery, specifically Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective and durable treatments for morbid obesity and potentially a viable treatment for type 2 diabetes (T2D). The resolution rate of T2D following these procedures is between 40 and 80% and far surpasses that achieved by medical management alone. The molecular basis for this improvement is not entirely understood, but has been attributed in part to the altered enterohepatic circulation of bile acids. In this review we highlight how bile acids potentially contribute to improved lipid and glucose homeostasis, insulin sensitivity and energy expenditure after these procedures. The impact of altered bile acid levels in enterohepatic circulation is also associated with changes in gut microflora, which may further contribute to some of these beneficial effects. We highlight the beneficial effects of experimental surgical procedures in rodents that alter bile secretory flow without gastric restriction or altering nutrient flow. This information suggests a role for bile acids beyond dietary fat emulsification in altering whole body glucose and lipid metabolism strongly, and also suggests emerging roles for the activation of the bile acid receptors farnesoid x receptor (FXR) and G-protein coupled bile acid receptor (TGR5) in these improvements. The limitations of rodent studies and the current state of our understanding is reviewed and the potential effects of bile acids mediating the short- and long-term metabolic improvements after bariatric surgery is critically examined.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
3 Members
0 Resources
17 MeSH Terms
The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells.
Conrad E, Dai C, Spaeth J, Guo M, Cyphert HA, Scoville D, Carroll J, Yu WM, Goodrich LV, Harlan DM, Grove KL, Roberts CT, Powers AC, Gu G, Stein R
(2016) Am J Physiol Endocrinol Metab 310: E91-E102
MeSH Terms: Adolescent, Adult, Animals, Biomarkers, Female, Humans, Insulin-Secreting Cells, Islets of Langerhans, Macaca mulatta, MafB Transcription Factor, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Middle Aged, Primates, Rodentia, Young Adult
Show Abstract · Added February 6, 2016
Analysis of MafB(-/-) mice has suggested that the MAFB transcription factor was essential to islet α- and β-cell formation during development, although the postnatal physiological impact could not be studied here because these mutants died due to problems in neural development. Pancreas-wide mutant mice were generated to compare the postnatal significance of MafB (MafB(Δpanc)) and MafA/B (MafAB(Δpanc)) with deficiencies associated with the related β-cell-enriched MafA mutant (MafA(Δpanc)). Insulin(+) cell production and β-cell activity were merely delayed in MafB(Δpanc) islets until MafA was comprehensively expressed in this cell population. We propose that MafA compensates for the absence of MafB in MafB(Δpanc) mice, which is supported by the death of MafAB(Δpanc) mice soon after birth from hyperglycemia. However, glucose-induced glucagon secretion was compromised in adult MafB(Δpanc) islet α-cells. Based upon these results, we conclude that MafB is only essential to islet α-cell activity and not β-cell. Interestingly, a notable difference between mice and humans is that MAFB is coexpressed with MAFA in adult human islet β-cells. Here, we show that nonhuman primate (NHP) islet α- and β-cells also produce MAFB, implying that MAFB represents a unique signature and likely important regulator of the primate islet β-cell.
1 Communities
3 Members
0 Resources
18 MeSH Terms
Advancements and challenges in generating accurate animal models of gestational diabetes mellitus.
Pasek RC, Gannon M
(2013) Am J Physiol Endocrinol Metab 305: E1327-38
MeSH Terms: Adult, Animal Experimentation, Animals, Diabetes Mellitus, Experimental, Diabetes, Gestational, Female, Humans, Pancreatectomy, Pregnancy, Rodentia
Show Abstract · Added January 6, 2014
The maintenance of glucose homeostasis during pregnancy is critical to the health and well-being of both the mother and the developing fetus. Strikingly, approximately 7% of human pregnancies are characterized by insufficient insulin production or signaling, resulting in gestational diabetes mellitus (GDM). In addition to the acute health concerns of hyperglycemia, women diagnosed with GDM during pregnancy have an increased incidence of complications during pregnancy as well as an increased risk of developing type 2 diabetes (T2D) later in life. Furthermore, children born to mothers diagnosed with GDM have increased incidence of perinatal complications, including hypoglycemia, respiratory distress syndrome, and macrosomia, as well as an increased risk of being obese or developing T2D as adults. No single environmental or genetic factor is solely responsible for the disease; instead, a variety of risk factors, including weight, ethnicity, genetics, and family history, contribute to the likelihood of developing GDM, making the generation of animal models that fully recapitulate the disease difficult. Here, we discuss and critique the various animal models that have been generated to better understand the etiology of diabetes during pregnancy and its physiological impacts on both the mother and the fetus. Strategies utilized are diverse in nature and include the use of surgical manipulation, pharmacological treatment, nutritional manipulation, and genetic approaches in a variety of animal models. Continued development of animal models of GDM is essential for understanding the consequences of this disease as well as providing insights into potential treatments and preventative measures.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Pathology of rodent models of intestinal cancer: progress report and recommendations.
Washington MK, Powell AE, Sullivan R, Sundberg JP, Wright N, Coffey RJ, Dove WF
(2013) Gastroenterology 144: 705-17
MeSH Terms: Animals, Biopsy, Needle, Colorectal Neoplasms, Disease Models, Animal, Education, Guidelines as Topic, Humans, Immunohistochemistry, Intestinal Neoplasms, Mice, Neoplasm Invasiveness, Neoplasm Staging, Research Report, Rodentia, Sampling Studies, Species Specificity, United States
Show Abstract · Added March 7, 2014
In October 2010, a pathology review of rodent models of intestinal neoplasia was held at The Jackson Laboratory. This review complemented 2 other concurrent events: a workshop on methods of modeling colon cancer in rodents and a conference on current issues in murine and human colon cancer. We summarize the results of the pathology review and the committee's recommendations for tumor nomenclature. A virtual high-resolution image slide box of these models has been developed. This report discusses significant recent developments in rodent modeling of intestinal neoplasia, including the role of stem cells in cancer and the creation of models of metastatic intestinal cancer.
Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
1 Communities
2 Members
0 Resources
17 MeSH Terms
Prostaglandin E2 modulation of blood pressure homeostasis: studies in rodent models.
Swan CE, Breyer RM
(2011) Prostaglandins Other Lipid Mediat 96: 10-3
MeSH Terms: Animals, Blood Pressure, Calcium, Cardiovascular Diseases, Cyclic AMP, Dinoprostone, Disease Models, Animal, Humans, Hypertension, Kidney, Kidney Failure, Chronic, Mice, Mice, Knockout, Prostaglandin Antagonists, Rats, Receptors, Prostaglandin E, Renin-Angiotensin System, Rodentia, Signal Transduction, Vasoconstrictor Agents
Show Abstract · Added December 21, 2013
Hypertension is a well established risk factor for cardiovascular diseases such as stroke and is the leading cause of chronic kidney failure. Although a number of pharmacologic agents are available for the treatment of hypertension including agents that affect the renin-angiotensin-aldosterone system (RAAS), unmet needs in the treatment of hypertension suggest that identification of novel pharmacological targets would be an important healthcare goal. One potential target is prostaglandin E(2) (PGE(2)), a potent lipid mediator with a diverse and sometimes opposing range of biological effects. PGE(2) signals through four subtypes of G-protein coupled receptors designated EP1 through EP4. PGE(2) functions primarily as a vasodepressor; under certain conditions PGE(2) administration mediates vasopressor activity. This review focuses on the current understanding of the roles of PGE(2) receptors in vascular reactivity, hypertension and end-organ damage.
Published by Elsevier Inc.
1 Communities
1 Members
0 Resources
20 MeSH Terms
Induction of the renal stanniocalcin-1 gene in rodents by water deprivation.
Turner J, Sazonova O, Wang H, Pozzi A, Wagner GF
(2010) Mol Cell Endocrinol 328: 8-15
MeSH Terms: Animals, Drinking, Female, Gene Expression Regulation, Glycoproteins, Kidney, Male, Mice, Mice, Inbred C57BL, Natriuresis, Nephrectomy, Rats, Rats, Wistar, Rodentia, Time Factors, Up-Regulation, Water Deprivation, Water-Electrolyte Imbalance
Show Abstract · Added February 24, 2014
Stanniocalcin-1 (STC-1) is made by kidney collecting duct cells for targeting of nephron mitochondria to promote respiratory uncoupling and calcium uniport activity. However, the purpose of these actions and how the renal gene is regulated are poorly understood. This study has addressed the latter issue by monitoring renal STC-1 gene expression in different models of kidney function. Unilateral nephrectomy and over-hydration had no bearing on renal gene activity in adult Wistar rats. Dehydration, on the other hand, had time-dependent stimulatory effects in male and female kidney cortex, where STC-1 mRNA levels increased 8-fold by 72h. Medullary gene activity was significantly increased as well, but muted in comparison ( approximately 2-fold). Gene induction was accompanied by an increase in mitochondrial sequestration of STC-1 protein. Aldosterone and angiotensin II had no bearing on STC-1 gene induction, although there was evidence of a role for arginine vasopressin. Gene induction was unaltered in integrin alpha1 knockout mice, which have an impaired tonicity enhancer binding protein (TonEBP) response to dehydration. The STC-1 gene response could be cytoprotective in intent, as dehydration entails a fall in renal blood flow and a rise in medullary interstitial osmolality. Alternatively, STC-1 could have a role in salt and water balance as dehydration necessitates water conservation as well as controlled natriuresis and kaliuresis.
Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms