Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 112

Publication Record

Connections

Structural and Functional Features of the Reovirus σ1 Tail.
Dietrich MH, Ogden KM, Long JM, Ebenhoch R, Thor A, Dermody TS, Stehle T
(2018) J Virol 92:
MeSH Terms: Amino Acid Sequence, Capsid Proteins, Cells, Cultured, Crystallography, X-Ray, Protein Binding, Protein Conformation, Receptors, Virus, Reoviridae, Reoviridae Infections, Sequence Homology, Virus Attachment, Virus Internalization, Virus Replication
Show Abstract · Added April 3, 2019
Mammalian orthoreovirus attachment to target cells is mediated by the outer capsid protein σ1, which projects from the virion surface. The σ1 protein is a homotrimer consisting of a filamentous tail, which is partly inserted into the virion; a body domain constructed from β-spiral repeats; and a globular head with receptor-binding properties. The σ1 tail is predicted to form an α-helical coiled coil. Although σ1 undergoes a conformational change during cell entry, the nature of this change and its contributions to viral replication are unknown. Electron micrographs of σ1 molecules released from virions identified three regions of flexibility, including one at the midpoint of the molecule, that may be involved in its structural rearrangement. To enable a detailed understanding of essential σ1 tail organization and properties, we determined high-resolution structures of the reovirus type 1 Lang (T1L) and type 3 Dearing (T3D) σ1 tail domains. Both molecules feature extended α-helical coiled coils, with T1L σ1 harboring central chloride ions. Each molecule displays a discontinuity (stutter) within the coiled coil and an unexpectedly seamless transition to the body domain. The transition region features conserved interdomain interactions and appears rigid rather than highly flexible. Functional analyses of reoviruses containing engineered σ1 mutations suggest that conserved residues predicted to stabilize the coiled-coil-to-body junction are essential for σ1 folding and encapsidation, whereas central chloride ion coordination and the stutter are dispensable for efficient replication. Together, these findings enable modeling of full-length reovirus σ1 and provide insight into the stabilization of a multidomain virus attachment protein. While it is established that different conformational states of attachment proteins of enveloped viruses mediate receptor binding and membrane fusion, less is understood about how such proteins mediate attachment and entry of nonenveloped viruses. The filamentous reovirus attachment protein σ1 binds cellular receptors; contains regions of predicted flexibility, including one at the fiber midpoint; and undergoes a conformational change during cell entry. Neither the nature of the structural change nor its contribution to viral infection is understood. We determined crystal structures of large σ1 fragments for two different reovirus serotypes. We observed an unexpectedly tight transition between two domains spanning the fiber midpoint, which allows for little flexibility. Studies of reoviruses with engineered changes near the σ1 midpoint suggest that the stabilization of this region is critical for function. Together with a previously determined structure, we now have a complete model of the full-length, elongated reovirus σ1 attachment protein.
Copyright © 2018 American Society for Microbiology.
0 Communities
1 Members
0 Resources
MeSH Terms
Reovirus-Induced Apoptosis in the Intestine Limits Establishment of Enteric Infection.
Brown JJ, Short SP, Stencel-Baerenwald J, Urbanek K, Pruijssers AJ, McAllister N, Ikizler M, Taylor G, Aravamudhan P, Khomandiak S, Jabri B, Williams CS, Dermody TS
(2018) J Virol 92:
MeSH Terms: Animals, Antigens, Viral, Apoptosis, Cell Line, Cricetinae, Epithelial Cells, Intestinal Mucosa, Mammalian orthoreovirus 3, Mice, Orthoreovirus, Mammalian, Reoviridae Infections
Show Abstract · Added April 15, 2019
Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease. Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.
Copyright © 2018 American Society for Microbiology.
0 Communities
1 Members
0 Resources
MeSH Terms
Structural Insights into Reovirus σ1 Interactions with Two Neutralizing Antibodies.
Dietrich MH, Ogden KM, Katen SP, Reiss K, Sutherland DM, Carnahan RH, Goff M, Cooper T, Dermody TS, Stehle T
(2017) J Virol 91:
MeSH Terms: Amino Acid Sequence, Animals, Antibodies, Neutralizing, Antibodies, Viral, Binding Sites, CHO Cells, Cell Line, Cricetulus, Hemagglutinin Glycoproteins, Influenza Virus, Immunoglobulin Fab Fragments, Mice, Molecular Docking Simulation, Molecular Dynamics Simulation, Neutralization Tests, Protein Binding, Protein Conformation, Protein Interaction Domains and Motifs, Reoviridae, Structure-Activity Relationship, Viral Proteins, Virus Replication
Show Abstract · Added April 26, 2017
Reovirus attachment protein σ1 engages glycan receptors and junctional adhesion molecule-A (JAM-A) and is thought to undergo a conformational change during the proteolytic disassembly of virions to infectious subvirion particles (ISVPs) that accompanies cell entry. The σ1 protein is also the primary target of neutralizing antibodies. Here, we present a structural and functional characterization of two neutralizing antibodies that target σ1 of serotype 1 (T1) and serotype 3 (T3) reoviruses. The crystal structures revealed that each antibody engages its cognate σ1 protein within the head domain via epitopes distinct from the JAM-A-binding site. Surface plasmon resonance and cell-binding assays indicated that both antibodies likely interfere with JAM-A engagement by steric hindrance. To define the interplay between the carbohydrate receptor and antibody binding, we conducted hemagglutination inhibition assays using virions and ISVPs. The glycan-binding site of T1 σ1 is located in the head domain and is partly occluded by the bound Fab in the crystal structure. The T1-specific antibody inhibited hemagglutination by virions and ISVPs, probably via direct interference with glycan engagement. In contrast to T1 σ1, the carbohydrate-binding site of T3 σ1 is located in the tail domain, distal to the antibody epitope. The T3-specific antibody inhibited hemagglutination by T3 virions but not ISVPs, indicating that the antibody- and glycan-binding sites in σ1 are in closer spatial proximity on virions than on ISVPs. Our results provide direct evidence for a structural rearrangement of σ1 during virion-to-ISVP conversion and contribute new information about the mechanisms of antibody-mediated neutralization of reovirus.
IMPORTANCE - Virus attachment proteins mediate binding to host cell receptors, serve critical functions in cell and tissue tropism, and are often targeted by the neutralizing antibody response. The structural investigation of antibody-antigen complexes can provide valuable information for understanding the molecular basis of virus neutralization. Studies with enveloped viruses, such as HIV and influenza virus, have helped to define sites of vulnerability and guide vaccination strategies. By comparison, less is known about antibody binding to nonenveloped viruses. Here, we structurally investigated two neutralizing antibodies that bind the attachment protein σ1 of reovirus. Furthermore, we characterized the neutralization efficiency, the binding affinity for σ1, and the effect of the antibodies on reovirus receptor engagement. Our analysis defines reovirus interactions with two neutralizing antibodies, allows us to propose a mechanism by which they block virus infection, and provides evidence for a conformational change in the σ1 protein during viral cell entry.
Copyright © 2017 American Society for Microbiology.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Comparison of three neurotropic viruses reveals differences in viral dissemination to the central nervous system.
Luethy LN, Erickson AK, Jesudhasan PR, Ikizler M, Dermody TS, Pfeiffer JK
(2016) Virology 487: 1-10
MeSH Terms: Animals, Cell Line, Central Nervous System, Cricetinae, HeLa Cells, Humans, Interferon Type I, Mice, Mice, Inbred C57BL, Mice, Knockout, Orthoreovirus, Mammalian, Peripheral Nerves, Poliomyelitis, Poliovirus, Receptor, Interferon alpha-beta, Reoviridae Infections, Sciatic Nerve, Yellow Fever, Yellow fever virus
Show Abstract · Added February 4, 2016
Neurotropic viruses initiate infection in peripheral tissues prior to entry into the central nervous system (CNS). However, mechanisms of dissemination are not completely understood. We used genetically marked viruses to compare dissemination of poliovirus, yellow fever virus 17D (YFV-17D), and reovirus type 3 Dearing in mice from a hind limb intramuscular inoculation site to the sciatic nerve, spinal cord, and brain. While YFV-17D likely entered the CNS via blood, poliovirus and reovirus likely entered the CNS by transport through the sciatic nerve to the spinal cord. We found that dissemination was inefficient in adult immune-competent mice for all three viruses, particularly reovirus. Dissemination of all viruses was more efficient in immune-deficient mice. Although poliovirus and reovirus both accessed the CNS by transit through the sciatic nerve, stimulation of neuronal transport by muscle damage enhanced dissemination only of poliovirus. Our results suggest that these viruses access the CNS using different pathways.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Serotonin Receptor Agonist 5-Nonyloxytryptamine Alters the Kinetics of Reovirus Cell Entry.
Mainou BA, Ashbrook AW, Smith EC, Dorset DC, Denison MR, Dermody TS
(2015) J Virol 89: 8701-12
MeSH Terms: Animals, Antiviral Agents, Biological Transport, Cell Line, Cell Survival, Cercopithecus aethiops, Chikungunya virus, Cholera Toxin, Cricetinae, Cytoskeleton, Endosomes, HeLa Cells, Humans, Interferon-gamma, L Cells (Cell Line), Methiothepin, Mice, Murine hepatitis virus, Reoviridae, Reoviridae Infections, Serotonin Antagonists, Transferrin, Tryptamines, Vero Cells, Virus Assembly, Virus Attachment, Virus Internalization
Show Abstract · Added February 4, 2016
UNLABELLED - Mammalian orthoreoviruses (reoviruses) are nonenveloped double-stranded RNA viruses that infect most mammalian species, including humans. Reovirus binds to cell surface glycans, junctional adhesion molecule A (JAM-A), and the Nogo-1 receptor (depending on the cell type) and enters cells by receptor-mediated endocytosis. Within the endocytic compartment, reovirus undergoes stepwise disassembly, which is followed by release of the transcriptionally active viral core into the cytoplasm. In a small-molecule screen to identify host mediators of reovirus infection, we found that treatment of cells with 5-nonyloxytryptamine (5-NT), a prototype serotonin receptor agonist, diminished reovirus cytotoxicity. 5-NT also blocked reovirus infection. In contrast, treatment of cells with methiothepin mesylate, a serotonin antagonist, enhanced infection by reovirus. 5-NT did not alter cell surface expression of JAM-A or attachment of reovirus to cells. However, 5-NT altered the distribution of early endosomes with a concomitant impairment of reovirus transit to late endosomes and a delay in reovirus disassembly. Consistent with an inhibition of viral disassembly, 5-NT treatment did not alter infection by in vitro-generated infectious subvirion particles, which bind to JAM-A but bypass a requirement for proteolytic uncoating in endosomes to infect cells. We also found that treatment of cells with 5-NT decreased the infectivity of alphavirus chikungunya virus and coronavirus mouse hepatitis virus. These data suggest that serotonin receptor signaling influences cellular activities that regulate entry of diverse virus families and provides a new, potentially broad-spectrum target for antiviral drug development.
IMPORTANCE - Identification of well-characterized small molecules that modulate viral infection can accelerate development of antiviral therapeutics while also providing new tools to increase our understanding of the cellular processes that underlie virus-mediated cell injury. We conducted a small-molecule screen to identify compounds capable of inhibiting cytotoxicity caused by reovirus, a prototype double-stranded RNA virus. We found that 5-nonyloxytryptamine (5-NT) impairs reovirus infection by altering viral transport during cell entry. Remarkably, 5-NT also inhibits infection by an alphavirus and a coronavirus. The antiviral properties of 5-NT suggest that serotonin receptor signaling is an important regulator of infection by diverse virus families and illuminate a potential new drug target.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
27 MeSH Terms
Glycan engagement dictates hydrocephalus induction by serotype 1 reovirus.
Stencel-Baerenwald J, Reiss K, Blaum BS, Colvin D, Li XN, Abel T, Boyd K, Stehle T, Dermody TS
(2015) MBio 6: e02356
MeSH Terms: Animals, Animals, Newborn, Cells, Cultured, Disease Models, Animal, G(M2) Ganglioside, Hydrocephalus, Mice, Receptors, Virus, Reoviridae, Reoviridae Infections, Serogroup, Virus Attachment
Show Abstract · Added February 4, 2016
UNLABELLED - Receptors expressed on the host cell surface adhere viruses to target cells and serve as determinants of viral tropism. Several viruses bind cell surface glycans to facilitate entry, but the contribution of specific glycan moieties to viral disease is incompletely understood. Reovirus provides a tractable experimental model for studies of viral neuropathogenesis. In newborn mice, serotype 1 (T1) reovirus causes hydrocephalus, whereas serotype 3 (T3) reovirus causes encephalitis. T1 and T3 reoviruses engage distinct glycans, suggesting that glycan-binding capacity contributes to these differences in pathogenesis. Using structure-guided mutagenesis, we engineered a mutant T1 reovirus incapable of binding the T1 reovirus-specific glycan receptor, GM2. The mutant virus induced substantially less hydrocephalus than wild-type virus, an effect phenocopied by wild-type virus infection of GM2-deficient mice. In comparison to wild-type virus, yields of mutant virus were diminished in cultured ependymal cells, the cell type that lines the brain ventricles. These findings suggest that GM2 engagement targets reovirus to ependymal cells in mice and illuminate the function of glycan engagement in reovirus serotype-dependent disease.
IMPORTANCE - Receptor utilization strongly influences viral disease, often dictating host range and target cell selection. Different reovirus serotypes bind to different glycans, but a precise function for these molecules in pathogenesis is unknown. We used type 1 (T1) reovirus deficient in binding the GM2 glycan and mice lacking GM2 to pinpoint a role for glycan engagement in hydrocephalus caused by T1 reovirus. This work indicates that engagement of a specific glycan can lead to infection of specific cells in the host and consequent disease at that site. Since reovirus is being developed as a vaccine vector and oncolytic agent, understanding reovirus-glycan interactions may allow manipulation of reovirus glycan-binding properties for therapeutic applications.
Copyright © 2015 Stencel-Baerenwald et al.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Endothelial JAM-A promotes reovirus viremia and bloodstream dissemination.
Lai CM, Boehme KW, Pruijssers AJ, Parekh VV, Van Kaer L, Parkos CA, Dermody TS
(2015) J Infect Dis 211: 383-93
MeSH Terms: Animals, Cell Adhesion Molecules, Cells, Cultured, Endothelial Cells, Fibroblasts, Male, Mice, Mice, Inbred C57BL, Receptors, Cell Surface, Receptors, Virus, Reoviridae, Tight Junctions, Viremia
Show Abstract · Added January 20, 2015
Viruses that cause systemic disease often spread through the bloodstream to infect target tissues. Although viremia is an important step in the pathogenesis of many viruses, how viremia is established is not well understood. Reovirus has been used to dissect mechanisms of viral pathogenesis and is being evaluated in clinical trials as an oncolytic agent. After peroral entry into mice, reovirus replicates within the gastrointestinal tract and disseminates systemically via hematogenous or neural routes. Junctional adhesion molecule-A (JAM-A) is a tight junction protein that serves as a receptor for reovirus. JAM-A is required for establishment of viremia and viral spread to sites of secondary replication. JAM-A also is expressed on the surface of circulating hematopoietic cells. To determine contributions of endothelial and hematopoietic JAM-A to reovirus dissemination and pathogenesis, we generated strains of mice with altered JAM-A expression in these cell types and assessed bloodstream spread of reovirus strain type 1 Lang (T1L), which disseminates solely by hematogenous routes. We found that endothelial JAM-A but not hematopoietic JAM-A facilitates reovirus T1L bloodstream entry and egress. Understanding how viruses establish viremia may aid in development of inhibitors of this critical step in viral pathogenesis and foster engineering of improved oncolytic viral vectors.
© The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
1 Communities
2 Members
0 Resources
13 MeSH Terms
Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates.
Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis e Sousa C
(2014) Nature 514: 372-375
MeSH Terms: Animals, Base Pairing, Base Sequence, DEAD Box Protein 58, DEAD-box RNA Helicases, Diphosphates, Female, Genome, Viral, Immunity, Innate, Male, Mice, RNA, Viral, Reoviridae
Show Abstract · Added January 21, 2015
Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α and β; hereafter IFN), which are key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5'-end (reviewed in refs 1, 2, 3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5'-diphosphates (5'pp). Genomes from mammalian reoviruses with 5'pp termini, 5'pp-RNA isolated from yeast L-A virus, and base-paired 5'pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5'pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5'pp. Such RNAs are found in some viruses but not in uninfected cells, indicating that recognition of 5'pp-RNA, like that of 5'ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system.
0 Communities
1 Members
0 Resources
13 MeSH Terms
The Nogo receptor NgR1 mediates infection by mammalian reovirus.
Konopka-Anstadt JL, Mainou BA, Sutherland DM, Sekine Y, Strittmatter SM, Dermody TS
(2014) Cell Host Microbe 15: 681-91
MeSH Terms: Animals, CHO Cells, Capsid Proteins, Cell Adhesion Molecules, Cell Membrane, Cricetulus, GPI-Linked Proteins, Host-Pathogen Interactions, Humans, Mice, Mutant Strains, Myelin Proteins, Neuraminidase, Neurons, Nogo Receptor 1, Receptors, Cell Surface, Reoviridae, Reoviridae Infections, Virion
Show Abstract · Added January 21, 2015
Neurotropic viruses, including mammalian reovirus, must disseminate from an initial site of replication to the central nervous system (CNS), often binding multiple receptors to facilitate systemic spread. Reovirus engages junctional adhesion molecule A (JAM-A) to disseminate hematogenously. However, JAM-A is dispensable for reovirus replication in the CNS. We demonstrate that reovirus binds Nogo receptor NgR1, a leucine-rich repeat protein expressed in the CNS, to infect neurons. Expression of NgR1 confers reovirus binding and infection of nonsusceptible cells. Incubating reovirus virions with soluble NgR1 neutralizes infectivity. Blocking NgR1 on transfected cells or primary cortical neurons abrogates reovirus infection. Concordantly, reovirus infection is ablated in primary cortical neurons derived from NgR1 null mice. Reovirus virions bind to soluble JAM-A and NgR1, while infectious disassembly intermediates (ISVPs) bind only to JAM-A. These results suggest that reovirus uses different capsid components to bind distinct cell-surface molecules, engaging independent receptors to facilitate spread and tropism.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Reovirus-mediated induction of ADAR1 (p150) minimally alters RNA editing patterns in discrete brain regions.
Hood JL, Morabito MV, Martinez CR, Gilbert JA, Ferrick EA, Ayers GD, Chappell JD, Dermody TS, Emeson RB
(2014) Mol Cell Neurosci 61: 97-109
MeSH Terms: Adenosine Deaminase, Age Factors, Analysis of Variance, Animals, Animals, Newborn, Body Weight, Brain, Gene Expression Regulation, Viral, Mice, Mice, Inbred C57BL, Protein Isoforms, RNA Editing, RNA, Messenger, RNA-Binding Proteins, Reoviridae
Show Abstract · Added January 20, 2015
Transcripts encoding ADAR1, a double-stranded, RNA-specific adenosine deaminase involved in the adenosine-to-inosine (A-to-I) editing of mammalian RNAs, can be alternatively spliced to produce an interferon-inducible protein isoform (p150) that is up-regulated in both cell culture and in vivo model systems in response to pathogen or interferon stimulation. In contrast to other tissues, p150 is expressed at extremely low levels in the brain and it is unclear what role, if any, this isoform may play in the innate immune response of the central nervous system (CNS) or whether the extent of editing for RNA substrates critical for CNS function is affected by its induction. To investigate the expression of ADAR1 isoforms in response to viral infection and subsequent alterations in A-to-I editing profiles for endogenous ADAR targets, we used a neurotropic strain of reovirus to infect neonatal mice and quantify A-to-I editing in discrete brain regions using a multiplexed, high-throughput sequencing strategy. While intracranial injection of reovirus resulted in a widespread increase in the expression of ADAR1 (p150) in multiple brain regions and peripheral organs, significant changes in site-specific A-to-I conversion were quite limited, suggesting that steady-state levels of p150 expression are not a primary determinant for modulating the extent of editing for numerous ADAR targets in vivo.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
15 MeSH Terms