Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 474

Publication Record

Connections

Using In Vitro Pull-Down and In-Cell Overexpression Assays to Study Protein Interactions with Arrestin.
Perry NA, Zhan X, Gurevich EV, Iverson TM, Gurevich VV
(2019) Methods Mol Biol 1957: 107-120
MeSH Terms: Animals, Arrestin, Biological Assay, COS Cells, Cercopithecus aethiops, HEK293 Cells, Humans, Immobilized Proteins, Mice, Protein Binding, Protein Interaction Mapping, Recombinant Fusion Proteins
Show Abstract · Added April 1, 2019
Nonvisual arrestins (arrestin-2/arrestin-3) interact with hundreds of G protein-coupled receptor (GPCR) subtypes and dozens of non-receptor signaling proteins. Here we describe the methods used to identify the interaction sites of arrestin-binding partners on arrestin-3 and the use of monofunctional individual arrestin-3 elements in cells. Our in vitro pull-down assay with purified proteins demonstrates that relatively few elements in arrestin engage each partner, whereas cell-based functional assays indicate that certain arrestin elements devoid of other functionalities can perform individual functions in living cells.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Autochthonous tumors driven by loss have an ongoing requirement for the RBP2 histone demethylase.
McBrayer SK, Olenchock BA, DiNatale GJ, Shi DD, Khanal J, Jennings RB, Novak JS, Oser MG, Robbins AK, Modiste R, Bonal D, Moslehi J, Bronson RT, Neuberg D, Nguyen QD, Signoretti S, Losman JA, Kaelin WG
(2018) Proc Natl Acad Sci U S A 115: E3741-E3748
MeSH Terms: Alleles, Animals, DNA-Binding Proteins, Echocardiography, Enzyme Activation, Fibroblasts, Genes, Retinoblastoma, Heart Septal Defects, Histone Code, Integrases, Jumonji Domain-Containing Histone Demethylases, Mice, Mice, Inbred C57BL, Molecular Targeted Therapy, Neoplasm Proteins, Pituitary Neoplasms, Recombinant Fusion Proteins, Retinoblastoma Protein, Tamoxifen, Thyroid Neoplasms, Transgenes
Show Abstract · Added April 22, 2018
Inactivation of the retinoblastoma gene () product, pRB, is common in many human cancers. Targeting downstream effectors of pRB that are central to tumorigenesis is a promising strategy to block the growth of tumors harboring loss-of-function mutations. One such effector is retinoblastoma-binding protein 2 (RBP2, also called JARID1A or KDM5A), which encodes an H3K4 demethylase. Binding of pRB to RBP2 has been linked to the ability of pRB to promote senescence and differentiation. Importantly, genetic ablation of RBP2 is sufficient to phenocopy pRB's ability to induce these cellular changes in cell culture experiments. Moreover, germline deletion significantly impedes tumorigenesis in mice. The value of RBP2 as a therapeutic target in cancer, however, hinges on whether loss of RBP2 could block the growth of established tumors as opposed to simply delaying their onset. Here we show that conditional, systemic ablation of RBP2 in tumor-bearing mice is sufficient to slow tumor growth and significantly extend survival without causing obvious toxicity to the host. These findings show that established -null tumors require RBP2 for growth and further credential RBP2 as a therapeutic target in human cancers driven by inactivation.
0 Communities
1 Members
0 Resources
21 MeSH Terms
The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.
Kolobova E, Roland JT, Lapierre LA, Williams JA, Mason TA, Goldenring JR
(2017) J Biol Chem 292: 20394-20409
MeSH Terms: A Kinase Anchor Proteins, Biomarkers, Cell Line, Centrosome, Cytoskeletal Proteins, Humans, Imaging, Three-Dimensional, Intracellular Signaling Peptides and Proteins, Luminescent Proteins, Microscopy, Electron, Transmission, Microtubule-Associated Proteins, Microtubule-Organizing Center, Models, Molecular, Nerve Tissue Proteins, Peptide Fragments, Phosphoproteins, Protein Interaction Domains and Motifs, Protein Interaction Mapping, Protein Multimerization, Proteomics, RNA Interference, Recombinant Fusion Proteins, Recombinant Proteins, Two-Hybrid System Techniques
Show Abstract · Added April 3, 2018
Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.
0 Communities
1 Members
0 Resources
MeSH Terms
Comparative analysis of chimeric ZFP-, TALE- and Cas9-piggyBac transposases for integration into a single locus in human cells.
Luo W, Galvan DL, Woodard LE, Dorset D, Levy S, Wilson MH
(2017) Nucleic Acids Res 45: 8411-8422
MeSH Terms: Bacterial Proteins, CRISPR-Associated Protein 9, CRISPR-Cas Systems, Cell Line, Tumor, DNA Transposable Elements, Endonucleases, Gene Knockout Techniques, Gene Targeting, Gene Transfer Techniques, Humans, Hypoxanthine Phosphoribosyltransferase, Mutagenesis, Insertional, Recombinant Fusion Proteins, Reproducibility of Results, Transcription Activator-Like Effector Nucleases, Transcription Activator-Like Effectors, Transposases, Zinc Fingers
Show Abstract · Added September 11, 2017
Integrating DNA delivery systems hold promise for many applications including treatment of diseases; however, targeted integration is needed for improved safety. The piggyBac (PB) transposon system is a highly active non-viral gene delivery system capable of integrating defined DNA segments into host chromosomes without requiring homologous recombination. We systematically compared four different engineered zinc finger proteins (ZFP), four transcription activator-like effector proteins (TALE), CRISPR associated protein 9 (SpCas9) and the catalytically inactive dSpCas9 protein fused to the amino-terminus of the transposase enzyme designed to target the hypoxanthine phosphoribosyltransferase (HPRT) gene located on human chromosome X. Chimeric transposases were evaluated for expression, transposition activity, chromatin immunoprecipitation at the target loci, and targeted knockout of the HPRT gene in human cells. One ZFP-PB and one TALE-PB chimera demonstrated notable HPRT gene targeting. In contrast, Cas9/dCas9-PB chimeras did not result in gene targeting. Instead, the HPRT locus appeared to be protected from transposon integration. Supplied separately, PB permitted highly efficient isolation of Cas9-mediated knockout of HPRT, with zero transposon integrations in HPRT by deep sequencing. In summary, these tools may allow isolation of 'targeted-only' cells, be utilized to protect a genomic locus from transposon integration, and enrich for Cas9-mutated cells.
Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
0 Communities
2 Members
0 Resources
18 MeSH Terms
cytochrome P450 46A1 (CYP46A1) activation by neuroactive compounds.
Mast N, Anderson KW, Johnson KM, Phan TTN, Guengerich FP, Pikuleva IA
(2017) J Biol Chem 292: 12934-12946
MeSH Terms: Acetylcholine, Allosteric Regulation, Amino Acid Substitution, Anti-HIV Agents, Aspartic Acid, Benzoxazines, Binding Sites, Biocatalysis, Cholesterol 24-Hydroxylase, Deuterium Exchange Measurement, Enzyme Activation, Glutamic Acid, Ligands, Models, Molecular, Molecular Docking Simulation, Mutagenesis, Site-Directed, Mutation, Nerve Tissue Proteins, Peptide Fragments, Protein Conformation, Recombinant Fusion Proteins, gamma-Aminobutyric Acid
Show Abstract · Added March 14, 2018
Cytochrome P450 46A1 (CYP46A1, cholesterol 24-hydroxylase) is the enzyme responsible for the majority of cholesterol elimination from the brain. Previously, we found that the anti-HIV drug efavirenz (EFV) can pharmacologically activate CYP46A1 in mice. Herein, we investigated whether CYP46A1 could also be activated by endogenous compounds, including major neurotransmitters. experiments with purified recombinant CYP46A1 indicated that CYP46A1 is activated by l-glutamate (l-Glu), l-aspartate, γ-aminobutyric acid, and acetylcholine, with l-Glu eliciting the highest increase (3-fold) in CYP46A1-mediated cholesterol 24-hydroxylation. We also found that l-Glu and other activating neurotransmitters bind to the same site on the CYP46A1 surface, which differs from the EFV-binding site. The other principal differences between EFV and l-Glu in CYP46A1 activation include an apparent lack of l-Glu binding to the P450 active site and different pathways of signal transduction from the allosteric site to the active site. EFV and l-Glu similarly increased the CYP46A1 , the rate of the "fast" phase of the enzyme reduction by the redox partner NADPH-cytochrome P450 oxidoreductase, and the amount of P450 reduced. Spectral titrations with cholesterol, in the presence of EFV or l-Glu, suggest that water displacement from the heme iron can be affected in activator-bound CYP46A1. Moreover, EFV and l-Glu synergistically activated CYP46A1. Collectively, our data, along with those from previous cell culture and studies by others, suggest that l-Glu-induced CYP46A1 activation is of physiological relevance.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Gβγ directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes.
Zurawski Z, Page B, Chicka MC, Brindley RL, Wells CA, Preininger AM, Hyde K, Gilbert JA, Cruz-Rodriguez O, Currie KPM, Chapman ER, Alford S, Hamm HE
(2017) J Biol Chem 292: 12165-12177
MeSH Terms: Animals, Binding, Competitive, Calcium Signaling, Cattle, Cell Line, GTP-Binding Protein beta Subunits, GTP-Binding Protein gamma Subunits, Humans, Lipid Bilayers, Liposomes, Membrane Fusion, Models, Molecular, Mutation, Nerve Tissue Proteins, Peptide Fragments, Protein Conformation, Protein Interaction Domains and Motifs, Protein Multimerization, Rats, Recombinant Fusion Proteins, Recombinant Proteins, Synaptosomal-Associated Protein 25, Synaptotagmin I, Syntaxin 1
Show Abstract · Added July 12, 2017
G-coupled G protein-coupled receptors can inhibit neurotransmitter release at synapses via multiple mechanisms. In addition to Gβγ-mediated modulation of voltage-gated calcium channels (VGCC), inhibition can also be mediated through the direct interaction of Gβγ subunits with the soluble -ethylmaleimide attachment protein receptor (SNARE) complex of the vesicle fusion apparatus. Binding studies with soluble SNARE complexes have shown that Gβγ binds to both ternary SNARE complexes, t-SNARE heterodimers, and monomeric SNAREs, competing with synaptotagmin 1(syt1) for binding sites on t-SNARE. However, in secretory cells, Gβγ, SNAREs, and synaptotagmin interact in the lipid environment of a vesicle at the plasma membrane. To approximate this environment, we show that fluorescently labeled Gβγ interacts specifically with lipid-embedded t-SNAREs consisting of full-length syntaxin 1 and SNAP-25B at the membrane, as measured by fluorescence polarization. Fluorescently labeled syt1 undergoes competition with Gβγ for SNARE-binding sites in lipid environments. Mutant Gβγ subunits that were previously shown to be more efficacious at inhibiting Ca-triggered exocytotic release than wild-type Gβγ were also shown to bind SNAREs at a higher affinity than wild type in a lipid environment. These mutant Gβγ subunits were unable to inhibit VGCC currents. Specific peptides corresponding to regions on Gβ and Gγ shown to be important for the interaction disrupt the interaction in a concentration-dependent manner. In fusion assays using full-length t- and v-SNAREs embedded in liposomes, Gβγ inhibited Ca/synaptotagmin-dependent fusion. Together, these studies demonstrate the importance of these regions for the Gβγ-SNARE interaction and show that the target of Gβγ, downstream of VGCC, is the membrane-embedded SNARE complex.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
24 MeSH Terms
Patterning protein complexes on DNA nanostructures using a GFP nanobody.
Sommese RF, Hariadi RF, Kim K, Liu M, Tyska MJ, Sivaramakrishnan S
(2016) Protein Sci 25: 2089-2094
MeSH Terms: Actin-Related Protein 2-3 Complex, Animals, DNA, Green Fluorescent Proteins, Nanostructures, Recombinant Fusion Proteins, Single-Domain Antibodies, Swine
Show Abstract · Added April 7, 2017
DNA nanostructures have become an important and powerful tool for studying protein function over the last 5 years. One of the challenges, though, has been the development of universal methods for patterning protein complexes on DNA nanostructures. Herein, we present a new approach for labeling DNA nanostructures by functionalizing them with a GFP nanobody. We demonstrate the ability to precisely control protein attachment via our nanobody linker using two enzymatic model systems, namely adenylyl cyclase activity and myosin motility. Finally, we test the power of this attachment method by patterning unpurified, endogenously expressed Arp2/3 protein complex from cell lysate. By bridging DNA nanostructures with a fluorescent protein ubiquitous throughout cell and developmental biology and protein biochemistry, this approach significantly streamlines the application of DNA nanostructures as a programmable scaffold in biological studies.
© 2016 The Protein Society.
1 Communities
1 Members
0 Resources
8 MeSH Terms
Quantitative assessment of fluorescent proteins.
Cranfill PJ, Sell BR, Baird MA, Allen JR, Lavagnino Z, de Gruiter HM, Kremers GJ, Davidson MW, Ustione A, Piston DW
(2016) Nat Methods 13: 557-62
MeSH Terms: Fluorescence, HeLa Cells, Humans, Luminescent Proteins, Microscopy, Fluorescence, Recombinant Fusion Proteins, Spectrometry, Fluorescence
Show Abstract · Added May 5, 2017
The advent of fluorescent proteins (FPs) for genetic labeling of molecules and cells has revolutionized fluorescence microscopy. Genetic manipulations have created a vast array of bright and stable FPs spanning blue to red spectral regions. Common to autofluorescent FPs is their tight β-barrel structure, which provides the rigidity and chemical environment needed for effectual fluorescence. Despite the common structure, each FP has unique properties. Thus, there is no single 'best' FP for every circumstance, and each FP has advantages and disadvantages. To guide decisions about which FP is right for a given application, we have quantitatively characterized the brightness, photostability, pH stability and monomeric properties of more than 40 FPs to enable straightforward and direct comparison between them. We focus on popular and/or top-performing FPs in each spectral region.
0 Communities
1 Members
0 Resources
7 MeSH Terms
A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV.
Wen X, Pickens J, Mousa JJ, Leser GP, Lamb RA, Crowe JE, Jardetzky TS
(2016) PLoS One 11: e0155917
MeSH Terms: Animals, Antibodies, Neutralizing, Antibodies, Viral, Antibody Specificity, Epitopes, Metapneumovirus, Mice, Mice, Inbred BALB C, Recombinant Fusion Proteins, Respiratory Syncytial Viruses, Viral Fusion Proteins
Show Abstract · Added April 13, 2017
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Treatment of chronic immune thrombocytopenia in children with romiplostim.
Chaturvedi S, McCrae KR
(2016) Lancet 388: 4-6
MeSH Terms: Female, Humans, Male, Purpura, Thrombocytopenic, Idiopathic, Receptors, Fc, Receptors, Thrombopoietin, Recombinant Fusion Proteins, Thrombopoietin
Added April 25, 2016
0 Communities
1 Members
0 Resources
8 MeSH Terms