Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 121

Publication Record

Connections

Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer.
Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, Sudhan DR, Guerrero-Zotano AL, Croessmann S, Guo Y, Ericsson PG, Lee KM, Nixon MJ, Schwarz LJ, Sanders ME, Dugger TC, Cruz MR, Behdad A, Cristofanilli M, Bardia A, O'Shaughnessy J, Nagy RJ, Lanman RB, Solovieff N, He W, Miller M, Su F, Shyr Y, Mayer IA, Balko JM, Arteaga CL
(2019) Nat Commun 10: 1373
MeSH Terms: Aminopyridines, Animals, Antineoplastic Agents, Hormonal, Antineoplastic Combined Chemotherapy Protocols, Breast Neoplasms, Circulating Tumor DNA, Cyclin D1, Cyclin-Dependent Kinase 4, Cyclin-Dependent Kinase 6, Drug Resistance, Neoplasm, Female, Fulvestrant, High-Throughput Nucleotide Sequencing, Humans, MCF-7 Cells, Mice, Mutation, Naphthalenes, Piperazines, Progression-Free Survival, Proportional Hazards Models, Protein Kinase Inhibitors, Purines, Pyrazoles, Pyridines, Quinolines, Quinoxalines, Receptor, Fibroblast Growth Factor, Type 1, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Estrogen, Signal Transduction, Xenograft Model Antitumor Assays
Show Abstract · Added April 2, 2019
Using an ORF kinome screen in MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus fulvestrant, we identified FGFR1 as a mechanism of drug resistance. FGFR1-amplified/ER+ breast cancer cells and MCF-7 cells transduced with FGFR1 were resistant to fulvestrant ± ribociclib or palbociclib. This resistance was abrogated by treatment with the FGFR tyrosine kinase inhibitor (TKI) lucitanib. Addition of the FGFR TKI erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts. Next generation sequencing of circulating tumor DNA (ctDNA) in 34 patients after progression on CDK4/6 inhibitors identified FGFR1/2 amplification or activating mutations in 14/34 (41%) post-progression specimens. Finally, ctDNA from patients enrolled in MONALEESA-2, the registration trial of ribociclib, showed that patients with FGFR1 amplification exhibited a shorter progression-free survival compared to patients with wild type FGFR1. Thus, we propose breast cancers with FGFR pathway alterations should be considered for trials using combinations of ER, CDK4/6 and FGFR antagonists.
0 Communities
1 Members
0 Resources
32 MeSH Terms
A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers.
Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, Liu Y, Fan H, Shen H, Ravikumar V, Rao A, Schultz A, Li X, Sumazin P, Williams C, Mestdagh P, Gunaratne PH, Yau C, Bowlby R, Robertson AG, Tiezzi DG, Wang C, Cherniack AD, Godwin AK, Kuderer NM, Rader JS, Zuna RE, Sood AK, Lazar AJ, Ojesina AI, Adebamowo C, Adebamowo SN, Baggerly KA, Chen TW, Chiu HS, Lefever S, Liu L, MacKenzie K, Orsulic S, Roszik J, Shelley CS, Song Q, Vellano CP, Wentzensen N, Cancer Genome Atlas Research Network, Weinstein JN, Mills GB, Levine DA, Akbani R
(2018) Cancer Cell 33: 690-705.e9
MeSH Terms: Breast Neoplasms, DNA Copy Number Variations, Databases, Genetic, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Gene Regulatory Networks, Genetic Predisposition to Disease, Genital Neoplasms, Female, Humans, Mutation, Organ Specificity, Prognosis, RNA, Long Noncoding, Receptors, Estrogen
Show Abstract · Added October 30, 2019
We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Intrinsic apoptotic pathway activation increases response to anti-estrogens in luminal breast cancers.
Williams MM, Lee L, Werfel T, Joly MMM, Hicks DJ, Rahman B, Elion D, McKernan C, Sanchez V, Estrada MV, Massarweh S, Elledge R, Duvall C, Cook RS
(2018) Cell Death Dis 9: 21
MeSH Terms: Aniline Compounds, Animals, Apoptosis, Breast Neoplasms, Cell Line, Tumor, Down-Regulation, Estrogen Antagonists, Female, Fulvestrant, Gene Targeting, Humans, Mice, Myeloid Cell Leukemia Sequence 1 Protein, Receptors, Estrogen, Signal Transduction, Sulfonamides, Up-Regulation, bcl-X Protein
Show Abstract · Added March 14, 2018
Estrogen receptor-α positive (ERα+) breast cancer accounts for approximately 70-80% of the nearly 25,0000 new cases of breast cancer diagnosed in the US each year. Endocrine-targeted therapies (those that block ERα activity) serve as the first line of treatment in most cases. Despite the proven benefit of endocrine therapies, however, ERα+ breast tumors can develop resistance to endocrine therapy, causing disease progression or relapse, particularly in the metastatic setting. Anti-apoptotic Bcl-2 family proteins enhance breast tumor cell survival, often promoting resistance to targeted therapies, including endocrine therapies. Herein, we investigated whether blockade of anti-apoptotic Bcl-2 family proteins could sensitize luminal breast cancers to anti-estrogen treatment. We used long-term estrogen deprivation (LTED) of human ERα+ breast cancer cell lines, an established model of sustained treatment with and acquired resistance to aromatase inhibitors (AIs), in combination with Bcl-2/Bcl-xL inhibition (ABT-263), finding that ABT-263 induced only limited tumor cell killing in LTED-selected cells in culture and in vivo. Interestingly, expression and activity of the Bcl-2-related factor Mcl-1 was increased in LTED cells. Genetic Mcl-1 ablation induced apoptosis in LTED-selected cells, and potently increased their sensitivity to ABT-263. Increased expression and activity of Mcl-1 was similarly seen in clinical breast tumor specimens treated with AI + the selective estrogen receptor downregulator fulvestrant. Delivery of Mcl-1 siRNA loaded into polymeric nanoparticles (MCL1 si-NPs) decreased Mcl-1 expression in LTED-selected and fulvestrant-treated cells, increasing tumor cell death and blocking tumor cell growth. These findings suggest that Mcl-1 upregulation in response to anti-estrogen treatment enhances tumor cell survival, decreasing response to therapeutic treatments. Therefore, strategies blocking Mcl-1 expression or activity used in combination with endocrine therapies would enhance tumor cell death.
0 Communities
2 Members
0 Resources
18 MeSH Terms
Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer.
Milne RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindström S, Hui S, Lemaçon A, Soucy P, Dennis J, Jiang X, Rostamianfar A, Finucane H, Bolla MK, McGuffog L, Wang Q, Aalfs CM, ABCTB Investigators, Adams M, Adlard J, Agata S, Ahmed S, Ahsan H, Aittomäki K, Al-Ejeh F, Allen J, Ambrosone CB, Amos CI, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Arnold N, Aronson KJ, Auber B, Auer PL, Ausems MGEM, Azzollini J, Bacot F, Balmaña J, Barile M, Barjhoux L, Barkardottir RB, Barrdahl M, Barnes D, Barrowdale D, Baynes C, Beckmann MW, Benitez J, Bermisheva M, Bernstein L, Bignon YJ, Blazer KR, Blok MJ, Blomqvist C, Blot W, Bobolis K, Boeckx B, Bogdanova NV, Bojesen A, Bojesen SE, Bonanni B, Børresen-Dale AL, Bozsik A, Bradbury AR, Brand JS, Brauch H, Brenner H, Bressac-de Paillerets B, Brewer C, Brinton L, Broberg P, Brooks-Wilson A, Brunet J, Brüning T, Burwinkel B, Buys SS, Byun J, Cai Q, Caldés T, Caligo MA, Campbell I, Canzian F, Caron O, Carracedo A, Carter BD, Castelao JE, Castera L, Caux-Moncoutier V, Chan SB, Chang-Claude J, Chanock SJ, Chen X, Cheng TD, Chiquette J, Christiansen H, Claes KBM, Clarke CL, Conner T, Conroy DM, Cook J, Cordina-Duverger E, Cornelissen S, Coupier I, Cox A, Cox DG, Cross SS, Cuk K, Cunningham JM, Czene K, Daly MB, Damiola F, Darabi H, Davidson R, De Leeneer K, Devilee P, Dicks E, Diez O, Ding YC, Ditsch N, Doheny KF, Domchek SM, Dorfling CM, Dörk T, Dos-Santos-Silva I, Dubois S, Dugué PA, Dumont M, Dunning AM, Durcan L, Dwek M, Dworniczak B, Eccles D, Eeles R, Ehrencrona H, Eilber U, Ejlertsen B, Ekici AB, Eliassen AH, EMBRACE, Engel C, Eriksson M, Fachal L, Faivre L, Fasching PA, Faust U, Figueroa J, Flesch-Janys D, Fletcher O, Flyger H, Foulkes WD, Friedman E, Fritschi L, Frost D, Gabrielson M, Gaddam P, Gammon MD, Ganz PA, Gapstur SM, Garber J, Garcia-Barberan V, García-Sáenz JA, Gaudet MM, Gauthier-Villars M, Gehrig A, GEMO Study Collaborators, Georgoulias V, Gerdes AM, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, González-Neira A, Goodfellow P, Greene MH, Alnæs GIG, Grip M, Gronwald J, Grundy A, Gschwantler-Kaulich D, Guénel P, Guo Q, Haeberle L, Hahnen E, Haiman CA, Håkansson N, Hallberg E, Hamann U, Hamel N, Hankinson S, Hansen TVO, Harrington P, Hart SN, Hartikainen JM, Healey CS, HEBON, Hein A, Helbig S, Henderson A, Heyworth J, Hicks B, Hillemanns P, Hodgson S, Hogervorst FB, Hollestelle A, Hooning MJ, Hoover B, Hopper JL, Hu C, Huang G, Hulick PJ, Humphreys K, Hunter DJ, Imyanitov EN, Isaacs C, Iwasaki M, Izatt L, Jakubowska A, James P, Janavicius R, Janni W, Jensen UB, John EM, Johnson N, Jones K, Jones M, Jukkola-Vuorinen A, Kaaks R, Kabisch M, Kaczmarek K, Kang D, Kast K, kConFab/AOCS Investigators, Keeman R, Kerin MJ, Kets CM, Keupers M, Khan S, Khusnutdinova E, Kiiski JI, Kim SW, Knight JA, Konstantopoulou I, Kosma VM, Kristensen VN, Kruse TA, Kwong A, Lænkholm AV, Laitman Y, Lalloo F, Lambrechts D, Landsman K, Lasset C, Lazaro C, Le Marchand L, Lecarpentier J, Lee A, Lee E, Lee JW, Lee MH, Lejbkowicz F, Lesueur F, Li J, Lilyquist J, Lincoln A, Lindblom A, Lissowska J, Lo WY, Loibl S, Long J, Loud JT, Lubinski J, Luccarini C, Lush M, MacInnis RJ, Maishman T, Makalic E, Kostovska IM, Malone KE, Manoukian S, Manson JE, Margolin S, Martens JWM, Martinez ME, Matsuo K, Mavroudis D, Mazoyer S, McLean C, Meijers-Heijboer H, Menéndez P, Meyer J, Miao H, Miller A, Miller N, Mitchell G, Montagna M, Muir K, Mulligan AM, Mulot C, Nadesan S, Nathanson KL, NBSC Collaborators, Neuhausen SL, Nevanlinna H, Nevelsteen I, Niederacher D, Nielsen SF, Nordestgaard BG, Norman A, Nussbaum RL, Olah E, Olopade OI, Olson JE, Olswold C, Ong KR, Oosterwijk JC, Orr N, Osorio A, Pankratz VS, Papi L, Park-Simon TW, Paulsson-Karlsson Y, Lloyd R, Pedersen IS, Peissel B, Peixoto A, Perez JIA, Peterlongo P, Peto J, Pfeiler G, Phelan CM, Pinchev M, Plaseska-Karanfilska D, Poppe B, Porteous ME, Prentice R, Presneau N, Prokofieva D, Pugh E, Pujana MA, Pylkäs K, Rack B, Radice P, Rahman N, Rantala J, Rappaport-Fuerhauser C, Rennert G, Rennert HS, Rhenius V, Rhiem K, Richardson A, Rodriguez GC, Romero A, Romm J, Rookus MA, Rudolph A, Ruediger T, Saloustros E, Sanders J, Sandler DP, Sangrajrang S, Sawyer EJ, Schmidt DF, Schoemaker MJ, Schumacher F, Schürmann P, Schwentner L, Scott C, Scott RJ, Seal S, Senter L, Seynaeve C, Shah M, Sharma P, Shen CY, Sheng X, Shimelis H, Shrubsole MJ, Shu XO, Side LE, Singer CF, Sohn C, Southey MC, Spinelli JJ, Spurdle AB, Stegmaier C, Stoppa-Lyonnet D, Sukiennicki G, Surowy H, Sutter C, Swerdlow A, Szabo CI, Tamimi RM, Tan YY, Taylor JA, Tejada MI, Tengström M, Teo SH, Terry MB, Tessier DC, Teulé A, Thöne K, Thull DL, Tibiletti MG, Tihomirova L, Tischkowitz M, Toland AE, Tollenaar RAEM, Tomlinson I, Tong L, Torres D, Tranchant M, Truong T, Tucker K, Tung N, Tyrer J, Ulmer HU, Vachon C, van Asperen CJ, Van Den Berg D, van den Ouweland AMW, van Rensburg EJ, Varesco L, Varon-Mateeva R, Vega A, Viel A, Vijai J, Vincent D, Vollenweider J, Walker L, Wang Z, Wang-Gohrke S, Wappenschmidt B, Weinberg CR, Weitzel JN, Wendt C, Wesseling J, Whittemore AS, Wijnen JT, Willett W, Winqvist R, Wolk A, Wu AH, Xia L, Yang XR, Yannoukakos D, Zaffaroni D, Zheng W, Zhu B, Ziogas A, Ziv E, Zorn KK, Gago-Dominguez M, Mannermaa A, Olsson H, Teixeira MR, Stone J, Offit K, Ottini L, Park SK, Thomassen M, Hall P, Meindl A, Schmutzler RK, Droit A, Bader GD, Pharoah PDP, Couch FJ, Easton DF, Kraft P, Chenevix-Trench G, García-Closas M, Schmidt MK, Antoniou AC, Simard J
(2017) Nat Genet 49: 1767-1778
MeSH Terms: BRCA1 Protein, Breast Neoplasms, European Continental Ancestry Group, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Heterozygote, Humans, Mutation, Polymorphism, Single Nucleotide, Receptors, Estrogen, Risk Factors
Show Abstract · Added April 3, 2018
Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
0 Communities
3 Members
0 Resources
MeSH Terms
Genomic profiling of ER breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance.
Giltnane JM, Hutchinson KE, Stricker TP, Formisano L, Young CD, Estrada MV, Nixon MJ, Du L, Sanchez V, Ericsson PG, Kuba MG, Sanders ME, Mu XJ, Van Allen EM, Wagle N, Mayer IA, Abramson V, Gόmez H, Rizzo M, Toy W, Chandarlapaty S, Mayer EL, Christiansen J, Murphy D, Fitzgerald K, Wang K, Ross JS, Miller VA, Stephens PJ, Yelensky R, Garraway L, Shyr Y, Meszoely I, Balko JM, Arteaga CL
(2017) Sci Transl Med 9:
MeSH Terms: Breast Neoplasms, Cell Line, Tumor, Cyclin D1, Cyclin-Dependent Kinase 4, Cyclin-Dependent Kinase 6, Female, Humans, In Vitro Techniques, Receptor, ErbB-2, Receptor, Fibroblast Growth Factor, Type 1, Receptors, Estrogen
Show Abstract · Added March 14, 2018
Inhibition of proliferation in estrogen receptor-positive (ER) breast cancers after short-term antiestrogen therapy correlates with long-term patient outcome. We profiled 155 ER/human epidermal growth factor receptor 2-negative (HER2) early breast cancers from 143 patients treated with the aromatase inhibitor letrozole for 10 to 21 days before surgery. Twenty-one percent of tumors remained highly proliferative, suggesting that these tumors harbor alterations associated with intrinsic endocrine therapy resistance. Whole-exome sequencing revealed a correlation between 8p11-12 and 11q13 gene amplifications, including and , respectively, and high Ki67. We corroborated these findings in a separate cohort of serial pretreatment, postneoadjuvant chemotherapy, and recurrent ER tumors. Combined inhibition of FGFR1 and CDK4/6 reversed antiestrogen resistance in ER/ coamplified CAMA1 breast cancer cells. RNA sequencing of letrozole-treated tumors revealed the existence of intrachromosomal fusion transcripts and increased expression of gene signatures indicative of enhanced E2F-mediated transcription and cell cycle processes in cancers with high Ki67. These data suggest that short-term preoperative estrogen deprivation followed by genomic profiling can be used to identify druggable alterations that may cause intrinsic endocrine therapy resistance.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Characterizing Genetic Susceptibility to Breast Cancer in Women of African Ancestry.
Feng Y, Rhie SK, Huo D, Ruiz-Narvaez EA, Haddad SA, Ambrosone CB, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Press MF, Deming SL, Rodriguez-Gil JL, Zheng Y, Yao S, Han YJ, Ogundiran TO, Rebbeck TR, Adebamowo C, Ojengbede O, Falusi AG, Hennis A, Nemesure B, Ambs S, Blot W, Cai Q, Signorello L, Nathanson KL, Lunetta KL, Sucheston-Campbell LE, Bensen JT, Chanock SJ, Marchand LL, Olshan AF, Kolonel LN, Conti DV, Coetzee GA, Stram DO, Olopade OI, Palmer JR, Haiman CA
(2017) Cancer Epidemiol Biomarkers Prev 26: 1016-1026
MeSH Terms: African Americans, Alleles, Biomarkers, Tumor, Breast Neoplasms, Case-Control Studies, Chromosome Mapping, Female, Genetic Loci, Genetic Predisposition to Disease, Humans, Polymorphism, Single Nucleotide, Receptors, Estrogen, Risk Factors
Show Abstract · Added April 3, 2018
Genome-wide association studies have identified approximately 100 common genetic variants associated with breast cancer risk, the majority of which were discovered in women of European ancestry. Because of different patterns of linkage disequilibrium, many of these genetic markers may not represent signals in populations of African ancestry. We tested 74 breast cancer risk variants and conducted fine-mapping of these susceptibility regions in 6,522 breast cancer cases and 7,643 controls of African ancestry from three genetic consortia (AABC, AMBER, and ROOT). Fifty-four of the 74 variants (73%) were found to have ORs that were directionally consistent with those previously reported, of which 12 were nominally statistically significant ( < 0.05). Through fine-mapping, in six regions (), we observed seven markers that better represent the underlying risk variant for overall breast cancer or breast cancer subtypes, whereas in another two regions (), we identified suggestive evidence of signals that are independent of the reported index variant. Overlapping chromatin features and regulatory elements suggest that many of the risk alleles lie in regions with biological functionality. Through fine-mapping of known susceptibility regions, we have revealed alleles that better characterize breast cancer risk in women of African ancestry. The risk alleles identified represent genetic markers for modeling and stratifying breast cancer risk in women of African ancestry. .
©2017 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Genome-wide association studies in women of African ancestry identified 3q26.21 as a novel susceptibility locus for oestrogen receptor negative breast cancer.
Huo D, Feng Y, Haddad S, Zheng Y, Yao S, Han YJ, Ogundiran TO, Adebamowo C, Ojengbede O, Falusi AG, Zheng W, Blot W, Cai Q, Signorello L, John EM, Bernstein L, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Press MF, Deming SL, Rodriguez-Gil JL, Nathanson KL, Domchek SM, Rebbeck TR, Ruiz-Narváez EA, Sucheston-Campbell LE, Bensen JT, Simon MS, Hennis A, Nemesure B, Leske MC, Ambs S, Chen LS, Qian F, Gamazon ER, Lunetta KL, Cox NJ, Chanock SJ, Kolonel LN, Olshan AF, Ambrosone CB, Olopade OI, Palmer JR, Haiman CA
(2016) Hum Mol Genet 25: 4835-4846
MeSH Terms: African Americans, African Continental Ancestry Group, Alleles, Breast Neoplasms, Case-Control Studies, Chromosomes, Human, Pair 3, Female, Gene Frequency, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, Receptors, Estrogen, Risk Factors, TNF-Related Apoptosis-Inducing Ligand
Show Abstract · Added April 13, 2017
Multiple breast cancer loci have been identified in previous genome-wide association studies, but they were mainly conducted in populations of European ancestry. Women of African ancestry are more likely to have young-onset and oestrogen receptor (ER) negative breast cancer for reasons that are unknown and understudied. To identify genetic risk factors for breast cancer in women of African descent, we conducted a meta-analysis of two genome-wide association studies of breast cancer; one study consists of 1,657 cases and 2,029 controls genotyped with Illumina’s HumanOmni2.5 BeadChip and the other study included 3,016 cases and 2,745 controls genotyped using Illumina Human1M-Duo BeadChip. The top 18,376 single nucleotide polymorphisms (SNP) from the meta-analysis were replicated in the third study that consists of 1,984 African Americans cases and 2,939 controls. We found that SNP rs13074711, 26.5 Kb upstream of TNFSF10 at 3q26.21, was significantly associated with risk of oestrogen receptor (ER)-negative breast cancer (odds ratio [OR]=1.29, 95% CI: 1.18-1.40; P = 1.8 × 10 − 8). Functional annotations suggest that the TNFSF10 gene may be involved in breast cancer aetiology, but further functional experiments are needed. In addition, we confirmed SNP rs10069690 was the best indicator for ER-negative breast cancer at 5p15.33 (OR = 1.30; P = 2.4 × 10 − 10) and identified rs12998806 as the best indicator for ER-positive breast cancer at 2q35 (OR = 1.34; P = 2.2 × 10 − 8) for women of African ancestry. These findings demonstrated additional susceptibility alleles for breast cancer can be revealed in diverse populations and have important public health implications in building race/ethnicity-specific risk prediction model for breast cancer.
0 Communities
2 Members
0 Resources
16 MeSH Terms
F-Fluoroestradiol PET/CT Measurement of Estrogen Receptor Suppression during a Phase I Trial of the Novel Estrogen Receptor-Targeted Therapeutic GDC-0810: Using an Imaging Biomarker to Guide Drug Dosage in Subsequent Trials.
Wang Y, Ayres KL, Goldman DA, Dickler MN, Bardia A, Mayer IA, Winer E, Fredrickson J, Arteaga CL, Baselga J, Manning HC, Mahmood U, Ulaner GA
(2017) Clin Cancer Res 23: 3053-3060
MeSH Terms: Adult, Aged, Biomarkers, Pharmacological, Breast Neoplasms, Cinnamates, Dose-Response Relationship, Drug, Estradiol, Estrogen Receptor alpha, Female, Fulvestrant, Humans, Indazoles, Middle Aged, Molecular Imaging, Molecular Targeted Therapy, Positron Emission Tomography Computed Tomography, Receptors, Estrogen, Tamoxifen
Show Abstract · Added April 6, 2017
Evaluate F-fluoroestradiol (FES) PET/CT as a biomarker of estrogen receptor (ER) occupancy and/or downregulation during phase I dose escalation of the novel ER targeting therapeutic GDC-0810 and help select drug dosage for subsequent clinical trials. In a phase I clinical trial of GDC-0810, patients with ER-positive metastatic breast cancer underwent FES PET/CT before beginning therapy and at cycle 2, day 3 of GDC-0810 therapy. Up to five target lesions were selected per patient, and FES standardized uptake value (SUV) corrected for background was recorded for each lesion pretherapy and on-therapy. Complete ER downregulation was defined as ≥90% decrease in FES SUV. The effect of prior tamoxifen and fulvestrant therapy on FES SUV was assessed. Of 30 patients who underwent paired FES-PET scans, 24 (80%) achieved ≥90% decrease in FES avidity, including 1 of 3 patients receiving 200 mg/day, 2 of 4 patients receiving 400 mg/day, 14 of 16 patients receiving 600 mg/day, and 7 of 7 patients receiving 800 mg/day. Withdrawal of tamoxifen 2 months prior to FES PET/CT and withdrawal of fulvestrant 6 months prior to FES PET/CT both appeared sufficient to prevent effects on FES SUV. A dosage of 600 mg GDC-0810 per day was selected for phase II in part due to decreases in FES SUV achieved in phase I. FES PET/CT was a useful biomarker of ER occupancy and/or downregulation in a phase I dose escalation trial of GDC-0810 and helped select the dosage of the ER antagonist/degrader for phase II trials. .
©2016 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation.
Ghoussaini M, French JD, Michailidou K, Nord S, Beesley J, Canisus S, Hillman KM, Kaufmann S, Sivakumaran H, Moradi Marjaneh M, Lee JS, Dennis J, Bolla MK, Wang Q, Dicks E, Milne RL, Hopper JL, Southey MC, Schmidt MK, Broeks A, Muir K, Lophatananon A, Fasching PA, Beckmann MW, Fletcher O, Johnson N, Sawyer EJ, Tomlinson I, Burwinkel B, Marme F, Guénel P, Truong T, Bojesen SE, Flyger H, Benitez J, González-Neira A, Alonso MR, Pita G, Neuhausen SL, Anton-Culver H, Brenner H, Arndt V, Meindl A, Schmutzler RK, Brauch H, Hamann U, Tessier DC, Vincent D, Nevanlinna H, Khan S, Matsuo K, Ito H, Dörk T, Bogdanova NV, Lindblom A, Margolin S, Mannermaa A, Kosma VM, kConFab/AOCS Investigators, Wu AH, Van Den Berg D, Lambrechts D, Floris G, Chang-Claude J, Rudolph A, Radice P, Barile M, Couch FJ, Hallberg E, Giles GG, Haiman CA, Le Marchand L, Goldberg MS, Teo SH, Yip CH, Borresen-Dale AL, NBCS Collaborators, Zheng W, Cai Q, Winqvist R, Pylkäs K, Andrulis IL, Devilee P, Tollenaar RA, García-Closas M, Figueroa J, Hall P, Czene K, Brand JS, Darabi H, Eriksson M, Hooning MJ, Koppert LB, Li J, Shu XO, Zheng Y, Cox A, Cross SS, Shah M, Rhenius V, Choi JY, Kang D, Hartman M, Chia KS, Kabisch M, Torres D, Luccarini C, Conroy DM, Jakubowska A, Lubinski J, Sangrajrang S, Brennan P, Olswold C, Slager S, Shen CY, Hou MF, Swerdlow A, Schoemaker MJ, Simard J, Pharoah PD, Kristensen V, Chenevix-Trench G, Easton DF, Dunning AM, Edwards SL
(2016) Am J Hum Genet 99: 903-911
MeSH Terms: Alleles, Breast Neoplasms, Case-Control Studies, Cell Line, Tumor, Chromosomes, Human, Pair 5, Enhancer Elements, Genetic, Fibroblast Growth Factor 10, Genetic Predisposition to Disease, Haplotypes, Humans, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, Quantitative Trait Loci, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Estrogen
Show Abstract · Added April 3, 2018
Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER) breast cancer (per-g allele OR ER = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER) breast cancer (lead SNP rs6864776: per-a allele OR ER = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10), and a single signal 3 SNP (rs200229088: per-t allele OR ER = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.
Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer.
Joseph JD, Darimont B, Zhou W, Arrazate A, Young A, Ingalla E, Walter K, Blake RA, Nonomiya J, Guan Z, Kategaya L, Govek SP, Lai AG, Kahraman M, Brigham D, Sensintaffar J, Lu N, Shao G, Qian J, Grillot K, Moon M, Prudente R, Bischoff E, Lee KJ, Bonnefous C, Douglas KL, Julien JD, Nagasawa JY, Aparicio A, Kaufman J, Haley B, Giltnane JM, Wertz IE, Lackner MR, Nannini MA, Sampath D, Schwarz L, Manning HC, Tantawy MN, Arteaga CL, Heyman RA, Rix PJ, Friedman L, Smith ND, Metcalfe C, Hager JH
(2016) Elife 5:
MeSH Terms: Animals, Antineoplastic Agents, Breast Neoplasms, Cell Line, Tumor, Cinnamates, Disease Models, Animal, Heterografts, Humans, Indazoles, Mice, Prospective Studies, Rats, Receptors, Estrogen, Treatment Outcome
Show Abstract · Added April 6, 2017
ER-targeted therapeutics provide valuable treatment options for patients with ER+ breast cancer, however, current relapse and mortality rates emphasize the need for improved therapeutic strategies. The recent discovery of prevalent ESR1 mutations in relapsed tumors underscores a sustained reliance of advanced tumors on ERα signaling, and provides a strong rationale for continued targeting of ERα. Here we describe GDC-0810, a novel, non-steroidal, orally bioavailable selective ER downregulator (SERD), which was identified by prospectively optimizing ERα degradation, antagonism and pharmacokinetic properties. GDC-0810 induces a distinct ERα conformation, relative to that induced by currently approved therapeutics, suggesting a unique mechanism of action. GDC-0810 has robust in vitro and in vivo activity against a variety of human breast cancer cell lines and patient derived xenografts, including a tamoxifen-resistant model and those that harbor ERα mutations. GDC-0810 is currently being evaluated in Phase II clinical studies in women with ER+ breast cancer.
0 Communities
2 Members
0 Resources
14 MeSH Terms