Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 87

Publication Record


Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective.
Shi F, Collins S
(2017) Horm Mol Biol Clin Investig 31:
MeSH Terms: Adipocytes, Beige, Adipocytes, Brown, Animals, Cyclic AMP-Dependent Protein Kinases, Cyclic GMP-Dependent Protein Kinases, Energy Metabolism, Gene Expression Regulation, Humans, Intracellular Space, Mechanistic Target of Rapamycin Complex 1, MicroRNAs, Natriuretic Agents, RNA, Long Noncoding, Receptors, Adrenergic, beta, Second Messenger Systems, Signal Transduction, Thermogenesis, Uncoupling Protein 1
Show Abstract · Added September 26, 2018
β-adrenergic receptors (βARs) are well established for conveying the signal from catecholamines to adipocytes. Acting through the second messenger cyclic adenosine monophosphate (cAMP) they stimulate lipolysis and also increase the activity of brown adipocytes and the 'browning' of adipocytes within white fat depots (so-called 'brite' or 'beige' adipocytes). Brown adipose tissue mitochondria are enriched with uncoupling protein 1 (UCP1), which is a regulated proton channel that allows the dissipation of chemical energy in the form of heat. The discovery of functional brown adipocytes in humans and inducible brown-like ('beige' or 'brite') adipocytes in rodents have suggested that recruitment and activation of these thermogenic adipocytes could be a promising strategy to increase energy expenditure for obesity therapy. More recently, the cardiac natriuretic peptides and their second messenger cyclic guanosine monophosphate (cGMP) have gained attention as a parallel signaling pathway in adipocytes, with some unique features. In this review, we begin with some important historical work that touches upon the regulation of brown adipocyte development and physiology. We then provide a synopsis of some recent advances in the signaling cascades from β-adrenergic agonists and natriuretic peptides to drive thermogenic gene expression in the adipocytes and how these two pathways converge at a number of unexpected points. Finally, moving from the physiologic hormonal signaling, we discuss yet another level of control downstream of these signals: the growing appreciation of the emerging roles of non-coding RNAs as important regulators of brown adipocyte formation and function. In this review, we discuss new developments in our understanding of the signaling mechanisms and factors including new secreted proteins and novel non-coding RNAs that control the function as well as the plasticity of the brown/beige adipose tissue as it responds to the energy needs and environmental conditions of the organism.
0 Communities
1 Members
0 Resources
MeSH Terms
Co-Activation of Metabotropic Glutamate Receptor 3 and Beta-Adrenergic Receptors Modulates Cyclic-AMP and Long-Term Potentiation, and Disrupts Memory Reconsolidation.
Walker AG, Sheffler DJ, Lewis AS, Dickerson JW, Foster DJ, Senter RK, Moehle MS, Lv X, Stansley BJ, Xiang Z, Rook JM, Emmitte KA, Lindsley CW, Conn PJ
(2017) Neuropsychopharmacology 42: 2553-2566
MeSH Terms: Animals, Cerebral Cortex, Conditioning (Psychology), Cyclic AMP, Hippocampus, Long-Term Potentiation, Male, Memory Consolidation, Mice, Inbred ICR, Mice, Knockout, Neurotransmitter Agents, Rats, Sprague-Dawley, Receptors, Adrenergic, beta, Receptors, Metabotropic Glutamate, Tissue Culture Techniques
Show Abstract · Added March 21, 2018
Activation of β-adrenergic receptors (βARs) enhances both the induction of long-term potentiation (LTP) in hippocampal CA1 pyramidal cells and hippocampal-dependent cognitive function. Interestingly, previous studies reveal that coincident activation of group II metabotropic glutamate (mGlu) receptors with βARs in the hippocampal astrocytes induces a large increase in cyclic-AMP (cAMP) accumulation and release of adenosine. Adenosine then acts on A adenosine receptors at neighboring excitatory Schaffer collateral terminals, which could counteract effects of activation of neuronal βARs on excitatory transmission. On the basis of this, we postulated that activation of the specific mGlu receptor subtype that mediates this response could inhibit βAR-mediated effects on hippocampal synaptic plasticity and cognitive function. Using novel mGlu receptor subtype-selective allosteric modulators along with knockout mice we now report that the effects of mGlu agonists on βAR-mediated increases in cAMP accumulation are exclusively mediated by mGlu. Furthermore, mGlu activation inhibits the ability of the βAR agonist isoproterenol to enhance hippocampal LTP, and this effect is absent in slices treated with either a glial toxin or an adenosine A receptor antagonist. Finally, systemic administration of the mGlu agonist LY379268 disrupted contextual fear memory in a manner similar to the effect of the βAR antagonist propranolol, and this effect was reversed by the mGlu-negative allosteric modulator VU0650786. Taken together, these data suggest that mGlu can influence astrocytic signaling and modulate βAR-mediated effects on hippocampal synaptic plasticity and cognitive function.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Skeletal Colonization by Breast Cancer Cells Is Stimulated by an Osteoblast and β2AR-Dependent Neo-Angiogenic Switch.
Mulcrone PL, Campbell JP, Clément-Demange L, Anbinder AL, Merkel AR, Brekken RA, Sterling JA, Elefteriou F
(2017) J Bone Miner Res 32: 1442-1454
MeSH Terms: Animals, Bone and Bones, Breast Neoplasms, Cell Line, Tumor, Coculture Techniques, Female, Humans, Mice, Mice, Knockout, Neoplasm Metastasis, Neoplasm Proteins, Neovascularization, Pathologic, Osteoblasts, Receptors, Adrenergic, beta-2, Vascular Endothelial Growth Factor A
Show Abstract · Added April 26, 2017
The skeleton is a common site for breast cancer metastasis. Although significant progress has been made to manage osteolytic bone lesions, the mechanisms driving the early steps of the bone metastatic process are still not sufficiently understood to design efficacious strategies needed to inhibit this process and offer preventative therapeutic options. Progression and recurrence of breast cancer, as well as reduced survival of patients with breast cancer, are associated with chronic stress, a condition known to stimulate sympathetic nerve outflow. In this study, we show that stimulation of the beta 2-adrenergic receptor (β2AR) by isoproterenol, used as a pharmacological surrogate of sympathetic nerve activation, led to increased blood vessel density and Vegf-a expression in bone. It also raised levels of secreted Vegf-a in osteoblast cultures, and accordingly, the conditioned media from isoproterenol-treated osteoblast cultures promoted new vessel formation in two ex vivo models of angiogenesis. Blocking the interaction between Vegf-a and its receptor, Vegfr2, blunted the increase in vessel density induced by isoproterenol. Genetic loss of the β2AR globally, or specifically in type 1 collagen-expressing osteoblasts, diminished the increase in Vegf-positive osteoblast number and bone vessel density induced by isoproterenol, and reduced the higher incidence of bone metastatic lesions induced by isoproterenol after intracardiac injection of an osteotropic variant of MDA-MB-231 breast cancer cells. Inhibition of the interaction between Vegf-a and Vegfr2 with the blocking antibody mcr84 also prevented the increase in bone vascular density and bone metastasis triggered by isoproterenol. Together, these results indicate that stimulation of the β2AR in osteoblasts triggers a Vegf-dependent neo-angiogenic switch that promotes bone vascular density and the colonization of the bone microenvironment by metastatic breast cancer cells. © 2017 American Society for Bone and Mineral Research.
© 2017 American Society for Bone and Mineral Research.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Genetic variation in alpha2-adrenoreceptors and heart rate recovery after exercise.
Kohli U, Diedrich A, Kannankeril PJ, Muszkat M, Sofowora GG, Hahn MK, English BA, Blakely RD, Stein CM, Kurnik D
(2015) Physiol Genomics 47: 400-6
MeSH Terms: Adult, Catecholamines, Exercise, Female, Heart Rate, Humans, Linear Models, Male, Polymorphism, Single Nucleotide, Receptors, Adrenergic, alpha-2, Receptors, Adrenergic, beta-1
Show Abstract · Added September 28, 2015
Heart rate recovery (HRR) after exercise is an independent predictor of adverse cardiovascular outcomes. HRR is mediated by both parasympathetic reactivation and sympathetic withdrawal and is highly heritable. We examined whether common genetic variants in adrenergic and cholinergic receptors and transporters affect HRR. In our study 126 healthy subjects (66 Caucasians, 56 African Americans) performed an 8 min step-wise bicycle exercise test with continuous computerized ECG recordings. We fitted an exponential curve to the postexercise R-R intervals for each subject to calculate the recovery constant (kr) as primary outcome. Secondary outcome was the root mean square residuals averaged over 1 min (RMS1min), a marker of parasympathetic tone. We used multiple linear regressions to determine the effect of functional candidate genetic variants in autonomic pathways (6 ADRA2A, 1 ADRA2B, 4 ADRA2C, 2 ADRB1, 3 ADRB2, 2 NET, 2 CHT, and 1 GRK5) on the outcomes before and after adjustment for potential confounders. Recovery constant was lower (indicating slower HRR) in ADRA2B 301-303 deletion carriers (n = 54, P = 0.01), explaining 3.6% of the interindividual variability in HRR. ADRA2A Asn251Lys, ADRA2C rs13118771, and ADRB1 Ser49Gly genotypes were associated with RMS1min. Genetic variability in adrenergic receptors may be associated with HRR after exercise. However, most of the interindividual variability in HRR remained unexplained by the variants examined. Noncandidate gene-driven approaches to study genetic contributions to HRR in larger cohorts will be of interest.
Copyright © 2015 the American Physiological Society.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes.
Gimenez LE, Babilon S, Wanka L, Beck-Sickinger AG, Gurevich VV
(2014) Cell Signal 26: 1523-31
MeSH Terms: Animals, Arrestins, COS Cells, Cell Line, Cercopithecus aethiops, Mutation, Protein Binding, Receptors, Adrenergic, beta, Receptors, Dopamine, Receptors, Muscarinic, Receptors, Neuropeptide Y
Show Abstract · Added February 12, 2015
Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation.
Borden P, Houtz J, Leach SD, Kuruvilla R
(2013) Cell Rep 4: 287-301
MeSH Terms: Animals, Cell Communication, Cell Movement, Female, Glucose, Insulin, Insulin Secretion, Islets of Langerhans, Male, Mice, Mice, Transgenic, Neurons, Norepinephrine, Pregnancy, Receptors, Adrenergic, beta, Signal Transduction, Sympathetic Nervous System
Show Abstract · Added August 14, 2013
Sympathetic neurons depend on target-derived neurotrophic cues to control their survival and growth. However, whether sympathetic innervation contributes reciprocally to the development of target tissues is less clear. Here, we report that sympathetic innervation is necessary for the formation of the pancreatic islets of Langerhans and for their functional maturation. Genetic or pharmacological ablation of sympathetic innervation during development resulted in altered islet architecture, reduced insulin secretion, and impaired glucose tolerance in mice. Similar defects were observed with pharmacological blockade of β-adrenergic signaling. Conversely, the administration of a β-adrenergic agonist restored islet morphology and glucose tolerance in deinnervated animals. Furthermore, in neuron-islet cocultures, sympathetic neurons promoted islet cell migration in a β-adrenergic-dependent manner. This study reveals that islet architecture requires extrinsic inductive cues from neighboring tissues such as sympathetic nerves and suggests that early perturbations in sympathetic innervation might underlie metabolic disorders.
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
0 Members
1 Resources
17 MeSH Terms
Locus coeruleus kappa-opioid receptors modulate reinstatement of cocaine place preference through a noradrenergic mechanism.
Al-Hasani R, McCall JG, Foshage AM, Bruchas MR
(2013) Neuropsychopharmacology 38: 2484-97
MeSH Terms: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer, Adrenergic alpha-2 Receptor Agonists, Adrenergic beta-1 Receptor Antagonists, Adrenergic beta-Antagonists, Animals, Betaxolol, Clonidine, Cocaine, Conditioning (Psychology), Drug-Seeking Behavior, Locus Coeruleus, Male, Mice, Mice, Inbred C57BL, Naltrexone, Propanolamines, Propranolol, Receptors, Adrenergic, alpha, Receptors, Adrenergic, beta, Receptors, Opioid, kappa
Show Abstract · Added May 15, 2015
Activation of kappa-opioid receptors (KORs) in monoamine circuits results in dysphoria-like behaviors and stress-induced reinstatement of drug seeking in both conditioned place preference (CPP) and self-administration models. Noradrenergic (NA) receptor systems have also been implicated in similar behaviors. Dynorphinergic projections terminate within the locus coeruleus (LC), a primary source of norepinephrine in the forebrain, suggesting a possible link between the NA and dynorphin/kappa opioid systems, yet the implications of these putative interactions have not been investigated. We isolated the necessity of KORs in the LC in kappa opioid agonist (U50,488)-induced reinstatement of cocaine CPP by blocking KORs in the LC with NorBNI (KOR antagonist). KOR-induced reinstatement was significantly attenuated in mice injected with NorBNI in the LC. To determine the sufficiency of KORs in the LC on U50,488-induced reinstatement of cocaine CPP, we virally re-expressed KORs in the LC of KOR knockout mice. We found that KORs expression in the LC alone was sufficient to partially rescue KOR-induced reinstatement. Next we assessed the role of NA signaling in KOR-induced reinstatement of cocaine CPP in the presence and absence of a α2-agonist (clonidine), β-adrenergic receptor antagonist (propranolol), and β(1)- and β(2)-antagonist (betaxolol and ICI-118,551 HCl). Both the blockade of postsynaptic β(1)-adrenergic receptors and the activation of presynaptic inhibitory adrenergic autoreceptors selectively potentiated the magnitude of KOR-induced reinstatement of cocaine CPP but not cocaine-primed CPP reinstatement. Finally, viral restoration of KORs in the LC together with β-adrenergic receptor blockade did not potentiate KOR-induced reinstatement to cocaine CPP, suggesting that adrenergic receptor interactions occur at KOR-expressing regions external to the LC. These results identify a previously unknown interaction between KORs and NA systems and suggest a NA regulation of KOR-dependent reinstatement of cocaine CPP.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Bone remodeling is regulated by inner ear vestibular signals.
Vignaux G, Besnard S, Ndong J, Philoxène B, Denise P, Elefteriou F
(2013) J Bone Miner Res 28: 2136-44
MeSH Terms: Adrenergic beta-Antagonists, Animals, Bone Remodeling, Densitometry, Female, Homeostasis, Motor Activity, Organ Size, Phenotype, Propranolol, Rats, Rats, Sprague-Dawley, Receptors, Adrenergic, beta, Signal Transduction, Vestibule, Labyrinth, Video Recording
Show Abstract · Added November 14, 2013
Bone remodeling allows the conservation of normal bone mass despite constant changes in internal and external environments. The adaptation of the skeleton to these various stimuli leads credence to the notion that bone remodeling is a true homeostatic function, and as such is under the control of specific centers in the central nervous system (CNS). Hypothalamic and brainstem centers, as well as the sympathetic nervous system (SNS), have been identified as regulators of bone remodeling. However, the nature of the afferent CNS stimuli that may modulate CNS centers involved in the control of bone remodeling, with the exception of leptin, remains unclear. Based on the partial efficacy of exercise and mechanical stimulation regimens to prevent microgravity-induced bone loss and the known alterations in vestibular functions associated with space flights, we hypothesized that inner ear vestibular signals may contribute to the regulation of bone remodeling. Using an established model of bilateral vestibular lesions and microtomographic and histomorphometric bone analyses, we show here that induction of bilateral vestibular lesion in rats generates significant bone loss, which is restricted to weight-bearing bones and associated with a significant reduction in bone formation, as observed in rats under microgravity conditions. Importantly, this bone loss was not associated with reduced locomotor activity or metabolic abnormalities, was accompanied with molecular signs of increased sympathetic outflow, and could be prevented by the β-blocker propranolol. Collectively, these data suggest that the homeostatic process of bone remodeling has a vestibulosympathetic regulatory component and that vestibular system pathologies might be accompanied by bone fragility.
© 2013 American Society for Bone and Mineral Research.
1 Communities
1 Members
0 Resources
16 MeSH Terms
The natriuretic peptides and fat metabolism.
Wang TJ
(2012) N Engl J Med 367: 377-8
MeSH Terms: Adipocytes, Adipose Tissue, Adipose Tissue, Brown, Animals, Cell Line, Humans, Mice, Mice, Knockout, Natriuretic Peptides, Obesity, Receptors, Adrenergic, beta, Receptors, Atrial Natriuretic Factor, Stem Cells
Added April 15, 2014
0 Communities
1 Members
0 Resources
13 MeSH Terms
Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice.
Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA, Elefteriou F
(2012) PLoS Biol 10: e1001363
MeSH Terms: Adrenergic beta-Antagonists, Animals, Bone Marrow Cells, Bone Neoplasms, Cell Movement, Female, Mammary Neoplasms, Experimental, Mice, Osteoblasts, Propranolol, Receptors, Adrenergic, beta-2, Signal Transduction, Stromal Cells, Sympathetic Nervous System
Show Abstract · Added November 14, 2013
Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress) or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the "vicious cycle" of bone destruction induced by these cells.
2 Communities
8 Members
0 Resources
14 MeSH Terms