Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 24

Publication Record

Connections

Nup100 regulates replicative life span by mediating the nuclear export of specific tRNAs.
Lord CL, Ospovat O, Wente SR
(2017) RNA 23: 365-377
MeSH Terms: Active Transport, Cell Nucleus, Basic-Leucine Zipper Transcription Factors, Blotting, Northern, Cell Division, Cell Nucleus, Culture Media, Gene Expression Regulation, Fungal, In Situ Hybridization, Fluorescence, Karyopherins, Nuclear Pore, Nuclear Pore Complex Proteins, RNA, Fungal, RNA, Transfer, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Time Factors
Show Abstract · Added April 14, 2017
Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of We previously reported that deletion of the nonessential gene increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of Δ mutants. Protein levels of the transcription factor Gcn4 are increased when is deleted, and is required for the elevated life spans of Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of Δ and Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the life span.
© 2017 Lord et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
0 Communities
1 Members
0 Resources
16 MeSH Terms
A micro-RNA expression signature for human NAFLD progression.
Guo Y, Xiong Y, Sheng Q, Zhao S, Wattacheril J, Flynn CR
(2016) J Gastroenterol 51: 1022-30
MeSH Terms: Adult, Biomarkers, Carcinoma, Hepatocellular, Female, Gene Expression Profiling, Humans, Liver Neoplasms, Male, MicroRNAs, Middle Aged, Non-alcoholic Fatty Liver Disease, Obesity, RNA, Ribosomal, RNA, Small Nucleolar, RNA, Transfer, Severity of Illness Index
Show Abstract · Added February 15, 2016
BACKGROUND - The spectrum of nonalcoholic fatty liver disease (NAFLD) describes disease conditions deteriorating from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to cirrhosis (CIR) to hepatocellular carcinoma (HCC). From a molecular and biochemical perspective, our understanding of the etiology of this disease is limited by the broad spectrum of disease presentations, the lack of a thorough understanding of the factors contributing to disease susceptibility, and ethical concerns related to repeat sampling of the liver. To better understand the factors associated with disease progression, we investigated by next-generation RNA sequencing the altered expression of microRNAs (miRNAs) in liver biopsies of class III obese subjects (body mass index ≥40 kg/m(2)) biopsied at the time of elective bariatric surgery.
METHODS - Clinical characteristics and unbiased RNA expression profiles for 233 miRs, 313 transfer RNAs (tRNAs), and 392 miscellaneous small RNAs (snoRNAs, snRNAs, rRNAs) were compared among 36 liver biopsy specimens stratified by disease severity.
RESULTS - The abundances of 3 miRNAs that were found to be differentially regulated (miR-301a-3p and miR-34a-5p increased and miR-375 decreased) with disease progression were validated by RT-PCR. No tRNAs or miscellaneous RNAs were found to be associated with disease severity. Similar patterns of increased miR-301a and decreased miR-375 expression were observed in 134 hepatocellular carcinoma (HCC) samples deposited in The Cancer Genome Atlas (TCGA).
CONCLUSIONS - Our analytical results suggest that NAFLD severity is associated with a specific pattern of altered hepatic microRNA expression that may drive the hallmark of this disorder: altered lipid and carbohydrate metabolism. The three identified miRNAs can potentially be used as biomarkers to access the severity of NAFLD. The persistence of this miRNA expression pattern in an external validation cohort of HCC samples suggests that specific microRNA expression patterns may permit and/or sustain NAFLD development to HCC.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis.
Snider CE, Stephens AD, Kirkland JG, Hamdani O, Kamakaka RT, Bloom K
(2014) J Cell Biol 207: 189-99
MeSH Terms: Adenosine Triphosphatases, Centrosome, Chromatin, DNA-Binding Proteins, Hydro-Lyases, Kinetochores, Microtubule-Associated Proteins, Mitosis, Multiprotein Complexes, RNA, Transfer, Ribonucleoproteins, Small Nuclear, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Spindle Apparatus
Show Abstract · Added January 25, 2016
Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.
© 2014 Snider et al.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Genomic organization of human transcription initiation complexes.
Venters BJ, Pugh BF
(2013) Nature 502: 53-8
MeSH Terms: Chromatin, Genome, Human, HeLa Cells, Hep G2 Cells, Humans, K562 Cells, MCF-7 Cells, Nucleotide Motifs, Polyadenylation, Promoter Regions, Genetic, RNA, Messenger, RNA, Transfer, TATA Box, Transcription Factors, Transcription Initiation, Genetic
Show Abstract · Added March 25, 2014
The human genome is pervasively transcribed, yet only a small fraction is coding. Here we address whether this non-coding transcription arises at promoters, and detail the interactions of initiation factors TATA box binding protein (TBP), transcription factor IIB (TFIIB) and RNA polymerase (Pol) II. Using ChIP-exo (chromatin immunoprecipitation with lambda exonuclease digestion followed by high-throughput sequencing), we identify approximately 160,000 transcription initiation complexes across the human K562 genome, and more in other cancer genomes. Only about 5% associate with messenger RNA genes. The remainder associates with non-polyadenylated non-coding transcription. Regardless, Pol II moves into a transcriptionally paused state, and TBP and TFIIB remain at the promoter. Remarkably, the vast majority of locations contain the four core promoter elements- upstream TFIIB recognition element (BREu), TATA, downstream TFIIB recognition element (BREd), and initiator element (INR)-in constrained positions. All but the INR also reside at Pol III promoters, where TBP makes similar contacts. This comprehensive and high-resolution genome-wide detection of the initiation machinery produces a consolidated view of transcription initiation events from yeast to humans at Pol II/III TATA-containing/TATA-less coding and non-coding genes.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission.
Freyer C, Cree LM, Mourier A, Stewart JB, Koolmeister C, Milenkovic D, Wai T, Floros VI, Hagström E, Chatzidaki EE, Wiesner RJ, Samuels DC, Larsson NG, Chinnery PF
(2012) Nat Genet 44: 1282-5
MeSH Terms: Animals, DNA Polymerase gamma, DNA, Mitochondrial, DNA-Directed DNA Polymerase, Female, Fertility, Genetic Heterogeneity, Genome, Mitochondrial, Germ-Line Mutation, Mice, Mice, Inbred C57BL, Oocytes, RNA, RNA, Mitochondrial, RNA, Transfer, Met
Show Abstract · Added December 12, 2013
A genetic bottleneck explains the marked changes in mitochondrial DNA (mtDNA) heteroplasmy that are observed during the transmission of pathogenic mutations, but the precise timing of these changes remains controversial, and it is not clear whether selection has a role. These issues are important for the genetic counseling of prospective mothers and for the development of treatments aimed at disease prevention. By studying mice transmitting a heteroplasmic single-base-pair deletion in the mitochondrial tRNA(Met) gene, we show that the extent of mammalian mtDNA heteroplasmy is principally determined prenatally within the developing female germline. Although we saw no evidence of mtDNA selection prenatally, skewed heteroplasmy levels were observed in the offspring of the next generation, consistent with purifying selection. High percentages of mtDNA genomes with the tRNA(Met) mutation were linked to a compensatory increase in overall mitochondrial RNA levels, ameliorating the biochemical phenotype and explaining why fecundity is not compromised.
0 Communities
1 Members
0 Resources
15 MeSH Terms
The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning.
Reiter NJ, Osterman AK, Mondragón A
(2012) Nucleic Acids Res 40: 10384-93
MeSH Terms: Bacterial Proteins, Biocatalysis, Catalytic Domain, Models, Molecular, Mutagenesis, Site-Directed, RNA Precursors, RNA, Transfer, Ribonuclease P, Thermotoga maritima
Show Abstract · Added January 28, 2014
RNase P is an RNA-based enzyme primarily responsible for 5'-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNAPhe revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases functionality. The active site includes at least two metal ions, a universal uridine (U52), and P RNA backbone moieties, but it is unclear whether an adjacent, bacterially conserved protein loop (residues 52-57) participates in catalysis. Here, mutagenesis combined with single-turnover reaction kinetics demonstrate that point mutations in this loop have either no or modest effects on catalytic efficiency. Similarly, amino acid changes in the 'RNR' region, which represent the most conserved region of bacterial RNase P proteins, exhibit negligible changes in catalytic efficiency. However, U52 and two bacterially conserved protein residues (F17 and R89) are essential for efficient Thermotoga maritima RNase P activity. The U52 nucleotide binds a metal ion at the active site, whereas F17 and R89 are positioned >20 Å from the cleavage site, probably making contacts with N(-4) and N(-5) nucleotides of the pre-tRNA 5'-leader. This suggests a synergistic coupling between transition state formation and substrate positioning via interactions with the leader.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Mitochondrial DNA deletions are associated with non-B DNA conformations.
Damas J, Carneiro J, Gonçalves J, Stewart JB, Samuels DC, Amorim A, Pereira F
(2012) Nucleic Acids Res 40: 7606-21
MeSH Terms: Animals, DNA Breaks, DNA, Mitochondrial, Genes, Mitochondrial, Genome, Mitochondrial, Humans, Mice, Nucleic Acid Conformation, RNA, Transfer, Sequence Deletion
Show Abstract · Added December 12, 2013
Mitochondrial DNA (mtDNA) deletions are a primary cause of mitochondrial disease and are believed to contribute to the aging process and to various neurodegenerative diseases. Despite strong observational and experimental evidence, the molecular basis of the deletion process remains obscure. In this study, we test the hypothesis that the primary cause of mtDNA vulnerability to breakage resides in the formation of non-B DNA conformations, namely hairpin, cruciform and cloverleaf-like elements. Using the largest database of human mtDNA deletions built thus far (753 different cases), we show that site-specific breakage hotspots exist in the mtDNA. Furthermore, we discover that the most frequent deletion breakpoints occur within or near predicted structures, a result that is supported by data from transgenic mice with mitochondrial disease. There is also a significant association between the folding energy of an mtDNA region and the number of breakpoints that it harbours. In particular, two clusters of hairpins (near the D-loop 3'-terminus and the L-strand origin of replication) are hotspots for mtDNA breakage. Consistent with our hypothesis, the highest number of 5'- and 3'-breakpoints per base is found in the highly structured tRNA genes. Overall, the data presented in this study suggest that non-B DNA conformations are a key element of the mtDNA deletion process.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Transcriptome-wide analysis of small RNA expression in early zebrafish development.
Wei C, Salichos L, Wittgrove CM, Rokas A, Patton JG
(2012) RNA 18: 915-29
MeSH Terms: Animals, Base Sequence, Cluster Analysis, Gene Expression, Gene Expression Profiling, Gene Expression Regulation, Developmental, MicroRNAs, Polymorphism, Genetic, RNA, Small Interfering, RNA, Transfer, Sequence Analysis, RNA, Transcriptome, Zebrafish
Show Abstract · Added August 16, 2012
During early vertebrate development, a large number of noncoding RNAs are maternally inherited or expressed upon activation of zygotic transcription. The exact identity, expression levels, and function for most of these noncoding RNAs remain largely unknown. miRNAs (microRNAs) and piRNAs (piwi-interacting RNAs) are two classes of small noncoding RNAs that play important roles in gene regulation during early embryonic development. Here, we utilized next-generation sequencing technology to determine temporal expression patterns for both miRNAs and piRNAs during four distinct stages of early vertebrate development using zebrafish as a model system. For miRNAs, the expression patterns for 198 known miRNAs within 122 different miRNA families and eight novel miRNAs were determined. Significant sequence variation was observed at the 5' and 3'ends of miRNAs, with most extra nucleotides added at the 3' end in a nontemplate directed manner. For the miR-430 family, the addition of adenosine and uracil residues is developmentally regulated and may play a role in miRNA stability during the maternal zygotic transition. Similar modification at the 3' ends of a large number of miRNAs suggests widespread regulation of stability during early development. Beside miRNAs, we also identified a large and unexpectedly diverse set of piRNAs expressed during early development.
1 Communities
2 Members
0 Resources
13 MeSH Terms
Efficient detection of RNA-protein interactions using tethered RNAs.
Iioka H, Loiselle D, Haystead TA, Macara IG
(2011) Nucleic Acids Res 39: e53
MeSH Terms: Aptamers, Nucleotide, Caco-2 Cells, Chemical Precipitation, HEK293 Cells, Humans, RNA, Transfer, RNA-Binding Proteins
Show Abstract · Added March 5, 2014
The diverse localization of transcripts in cells suggests that there are many specific RNA-protein interactions that have yet to be identified. Progress has been limited, however, by the lack of a robust method to detect and isolate the RNA-binding proteins. Here we describe the use of an RNA aptamer, scaffolded to a tRNA, to create an affinity matrix that efficiently pulls down transcript-specific RNA-binding proteins from cell lysates. The addition of the tRNA scaffold to a Streptavidin aptamer (tRSA) increased binding efficiency by ∼ 10-fold. The tRSA system with an attached G-quartet sequence also could efficiently and specifically capture endogenous Fragile X Mental Retardation Protein (FMRP), which recognizes this RNA sequence. An alternative method, using biotinylated RNA, captured FMRP less efficiently than did our tRSA method. Finally we demonstrate the identification of novel RNA-binding proteins that interact with intron2 or 3'-UTR of the polarity protein Crumbs3 transcript. Proteins captured by these RNA sequences attached to the tRNA scaffold were identified by mass spectrometry. GFP-tagged versions of these proteins also showed specific interaction with either the Crb3 intron2 or 3'-UTR. Our tRSA technique should find wide application in mapping the RNA-protein interactome.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA.
Reiter NJ, Osterman A, Torres-Larios A, Swinger KK, Pan T, Mondragón A
(2010) Nature 468: 784-9
MeSH Terms: Biocatalysis, Catalytic Domain, Crystallography, X-Ray, Genes, Bacterial, Holoenzymes, Metals, Models, Molecular, Molecular Conformation, RNA, Transfer, Phe, Ribonuclease P, Structure-Activity Relationship, Substrate Specificity, Thermotoga maritima
Show Abstract · Added January 28, 2014
Ribonuclease (RNase) P is the universal ribozyme responsible for 5'-end tRNA processing. We report the crystal structure of the Thermotoga maritima RNase P holoenzyme in complex with tRNA(Phe). The 154 kDa complex consists of a large catalytic RNA (P RNA), a small protein cofactor and a mature tRNA. The structure shows that RNA-RNA recognition occurs through shape complementarity, specific intermolecular contacts and base-pairing interactions. Soaks with a pre-tRNA 5' leader sequence with and without metal help to identify the 5' substrate path and potential catalytic metal ions. The protein binds on top of a universally conserved structural module in P RNA and interacts with the leader, but not with the mature tRNA. The active site is composed of phosphate backbone moieties, a universally conserved uridine nucleobase, and at least two catalytically important metal ions. The active site structure and conserved RNase P-tRNA contacts suggest a universal mechanism of catalysis by RNase P.
0 Communities
1 Members
0 Resources
13 MeSH Terms