Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 41

Publication Record

Connections

Synthesis of the Siderophore Coelichelin and Its Utility as a Probe in the Study of Bacterial Metal Sensing and Response.
Williams JC, Sheldon JR, Imlay HD, Dutter BF, Draelos MM, Skaar EP, Sulikowski GA
(2019) Org Lett 21: 679-682
MeSH Terms: Iron, Molecular Probes, Oligopeptides, Pseudomonas aeruginosa, Siderophores
Show Abstract · Added April 7, 2019
A convergent total synthesis of the siderophore coelichelin is described. The synthetic route also provided access to acetyl coelichelin and other congeners of the parent siderophore. The synthetic products were evaluated for their ability to bind ferric iron and promote growth of a siderophore-deficient strain of the Gram-negative bacterium Pseudomonas aeruginosa under iron restriction conditions. The results of these studies indicate coelichelin and several derivatives serve as ferric iron delivery vehicles for P. aeruginosa.
0 Communities
1 Members
0 Resources
MeSH Terms
Identification of a ubiquitin-binding interface using Rosetta and DEER.
Tessmer MH, Anderson DM, Pickrum AM, Riegert MO, Moretti R, Meiler J, Feix JB, Frank DW
(2018) Proc Natl Acad Sci U S A 115: 525-530
MeSH Terms: Bacterial Proteins, Crystallography, X-Ray, Electron Spin Resonance Spectroscopy, Models, Molecular, Protein Binding, Protein Domains, Pseudomonas aeruginosa, Ubiquitin
Show Abstract · Added March 17, 2018
ExoU is a type III-secreted cytotoxin expressing A phospholipase activity when injected into eukaryotic target cells by the bacterium The enzymatic activity of ExoU is undetectable in vitro unless ubiquitin, a required cofactor, is added to the reaction. The role of ubiquitin in facilitating ExoU enzymatic activity is poorly understood but of significance for designing inhibitors to prevent tissue injury during infections with strains of producing this toxin. Most ubiquitin-binding proteins, including ExoU, demonstrate a low (micromolar) affinity for monoubiquitin (monoUb). Additionally, ExoU is a large and dynamic protein, limiting the applicability of traditional structural techniques such as NMR and X-ray crystallography to define this protein-protein interaction. Recent advancements in computational methods, however, have allowed high-resolution protein modeling using sparse data. In this study, we combine double electron-electron resonance (DEER) spectroscopy and Rosetta modeling to identify potential binding interfaces of ExoU and monoUb. The lowest-energy scoring model was tested using biochemical, biophysical, and biological techniques. To verify the binding interface, Rosetta was used to design a panel of mutations to modulate binding, including one variant with enhanced binding affinity. Our analyses show the utility of computational modeling when combined with sensitive biological assays and biophysical approaches that are exquisitely suited for large dynamic proteins.
0 Communities
1 Members
0 Resources
8 MeSH Terms
The Cytokine Response to Lipopolysaccharide Does Not Predict the Host Response to Infection.
Fensterheim BA, Guo Y, Sherwood ER, Bohannon JK
(2017) J Immunol 198: 3264-3273
MeSH Terms: Animals, Cytokines, Disease Models, Animal, Flow Cytometry, Ligands, Lipid A, Lipopolysaccharides, Male, Mice, Mice, Inbred BALB C, Mice, Inbred C57BL, Poly I-C, Pseudomonas Infections, Pseudomonas aeruginosa, Toll-Like Receptors
Show Abstract · Added April 10, 2017
The magnitude of the LPS-elicited cytokine response is commonly used to assess immune function in critically ill patients. A suppressed response, known as endotoxin tolerance, is associated with worse outcomes, yet endotoxin tolerance-inducing TLR4 ligands are known to protect animals from infection. Thus, it remains unknown whether the magnitude of the LPS-elicited cytokine response provides an accurate assessment of antimicrobial immunity. To address this, the ability of diverse TLR ligands to modify the LPS-elicited cytokine response and resistance to infection were assessed. Priming of mice with LPS, monophosphoryl lipid A (MPLA), or poly(I:C) significantly reduced plasma LPS-elicited proinflammatory cytokines, reflecting endotoxin tolerance, whereas CpG-ODN-primed mice showed augmented cytokine production. In contrast, LPS, MPLA, and CpG-ODN, but not poly(I:C), improved the host response to a infection. Mice primed with protective TLR ligands, including CpG-ODN, showed reduced plasma cytokines during infection. The protection imparted by TLR ligands persisted for up to 15 d yet was independent of the adaptive immune system. In bone marrow-derived macrophages, protective TLR ligands induced a persistent metabolic phenotype characterized by elevated glycolysis and oxidative metabolism as well as augmented size, granularity, phagocytosis, and respiratory burst. Sustained augmentation of glycolysis in TLR-primed cells was dependent, in part, on hypoxia-inducible factor 1-α and was essential for increased phagocytosis. In conclusion, the magnitude of LPS-elicited cytokine production is not indicative of antimicrobial immunity after exposure to TLR ligands. Additionally, protective TLR ligands induce sustained augmentation of phagocyte metabolism and antimicrobial function.
Copyright © 2017 by The American Association of Immunologists, Inc.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Fms-like tyrosine kinase-3 ligand increases resistance to burn wound infection through effects on plasmacytoid dendritic cells.
Bae L, Bohannon JK, Cui W, Vinish M, Toliver-Kinsky T
(2017) BMC Immunol 18: 9
MeSH Terms: Animals, Burns, Cell Differentiation, Cell Movement, Cells, Cultured, Coculture Techniques, Dendritic Cells, Disease Models, Animal, Humans, Male, Membrane Proteins, Mice, Mice, Inbred BALB C, Neutrophil Activation, Neutrophils, Pseudomonas Infections, Pseudomonas aeruginosa, Sepsis
Show Abstract · Added May 10, 2017
BACKGROUND - Patients experiencing large thermal injuries are susceptible to opportunistic infections that can delay recovery and lead to sepsis. Dendritic cells (DC) are important for the detection of pathogens and activation of the innate and acquired immune responses. DCs are significantly decreased in burn patients early after injury, and the development of sepsis is associated with persistent DC depletion. In a murine model of burn wound infection, the enhancement of DCs after injury by treatment with the DC growth factor Fms-like tyrosine kinase-3 ligand (FL) enhances neutrophil migration to infection, improves bacterial clearance, and increases survival in a DC-dependent manner. FL expands the production of both conventional DCs (cDC) and plasmacytoid DCs (pDC). It has been established that cDCs are required for some of the protective effects of FL after burn injury. This study was designed to determine the contribution of the pDC subset.
METHODS - Mice were subjected to full-thickness scald burns under deep anesthesia and were provided analgesia. pDCs were depleted by injection of anti-plasmacytoid dendritic cell antigen-1 antibodies. Survival, bacterial clearance, and neutrophil responses in vivo and in vitro were measured.
RESULTS - Depletion of preexisting pDCs, but not FL-expanded pDCs, abrogated the beneficial effects of FL on survival, bacterial clearance, and neutrophil migration in response to burn wound infection. This requisite role of pDCs for FL-mediated enhancement of neutrophil migratory capacity is not due to direct effects of pDCs on neutrophils. cDCs, but not pDCs, directly increased neutrophil migratory capacity after co-culture.
CONCLUSIONS - The protective effects of FL treatment after burn injury are mediated by both pDCs and cDCs. Pharmacological enhancement of both DC subtypes by FL is a potential therapeutic intervention to enhance immune responses to infection and improve outcome after burn injury.
0 Communities
1 Members
0 Resources
18 MeSH Terms
The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction.
Wakeman CA, Moore JL, Noto MJ, Zhang Y, Singleton MD, Prentice BM, Gilston BA, Doster RS, Gaddy JA, Chazin WJ, Caprioli RM, Skaar EP
(2016) Nat Commun 7: 11951
MeSH Terms: Animals, Bacterial Proteins, Biofilms, Biosynthetic Pathways, Coinfection, Cystic Fibrosis, Humans, Immunity, Innate, Leukocyte L1 Antigen Complex, Manganese, Mice, Microbial Interactions, Proteomics, Pseudomonas Infections, Pseudomonas aeruginosa, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Staphylococcal Infections, Staphylococcus aureus, Zinc
Show Abstract · Added August 17, 2016
Microorganisms form biofilms containing differentiated cell populations. To determine factors driving differentiation, we herein visualize protein and metal distributions within Pseudomonas aeruginosa biofilms using imaging mass spectrometry. These in vitro experiments reveal correlations between differential protein distribution and metal abundance. Notably, zinc- and manganese-depleted portions of the biofilm repress the production of anti-staphylococcal molecules. Exposure to calprotectin (a host protein known to sequester metal ions at infectious foci) recapitulates responses occurring within metal-deplete portions of the biofilm and promotes interaction between P. aeruginosa and Staphylococcus aureus. Consistent with these results, the presence of calprotectin promotes co-colonization of the murine lung, and polymicrobial communities are found to co-exist in calprotectin-enriched airspaces of a cystic fibrosis lung explant. These findings, which demonstrate that metal fluctuations are a driving force of microbial community structure, have clinical implications because of the frequent occurrence of P. aeruginosa and S. aureus co-infections.
1 Communities
4 Members
0 Resources
19 MeSH Terms
IL-15 Superagonist Expands mCD8+ T, NK and NKT Cells after Burn Injury but Fails to Improve Outcome during Burn Wound Infection.
Patil NK, Luan L, Bohannon JK, Guo Y, Hernandez A, Fensterheim B, Sherwood ER
(2016) PLoS One 11: e0148452
MeSH Terms: Adaptive Immunity, Animals, Burns, CD8-Positive T-Lymphocytes, Cytokines, Disease Models, Animal, Humans, Interleukin-15, Killer Cells, Natural, Liver, Lymphocyte Activation, Lymphocyte Count, Lymphocyte Subsets, Male, Mice, Mice, Inbred BALB C, Natural Killer T-Cells, Pseudomonas Infections, Pseudomonas aeruginosa, Receptors, Interleukin-15, Recombinant Fusion Proteins, Spleen, Wound Infection
Show Abstract · Added February 18, 2016
BACKGROUND - Severely burned patients are highly susceptible to opportunistic infections and sepsis, owing to the loss of the protective skin barrier and immunological dysfunction. Interleukin-15 (IL-15) belongs to the IL-2 family of common gamma chain cytokines and stimulates the proliferation and activation of T (specifically memory CD8), NK and NKT cells. It has been shown to preserve T cell function and improve survival during cecal ligation and puncture (CLP)-induced sepsis in mice. However, the therapeutic efficacy of IL-15 or IL-15 superagonist (SA) during infection after burn injury has not been evaluated. Moreover, very few, if any, studies have examined, in detail, the effect of burn injury and infection on the adaptive immune system. Thus, we examined the effect of burn and sepsis on adaptive immune cell populations and the effect of IL-15 SA treatment on the host response to infection.
METHODS - Mice were subjected to a 35% total body surface area burn, followed by wound infection with Pseudomonas aeruginosa. In some experiments, IL-15 SA was administered after burn injury, but before infection. Leukocytes in spleen, liver and peritoneal cavity were characterized using flow cytometry. Bacterial clearance, organ injury and survival were also assessed.
RESULTS - Burn wound infection led to a significant decline in total white blood cell and lymphocyte counts and induced organ injury and sepsis. Burn injury caused decline in CD4+ and CD8+ T cells in the spleen, which was worsened by infection. IL-15 treatment inhibited this decline and significantly increased cell numbers and activation, as determined by CD69 expression, of CD4+, CD8+, B, NK and NKT cells in the spleen and liver after burn injury. However, IL-15 SA treatment failed to prevent burn wound sepsis-induced loss of CD4+, CD8+, B, NK and NKT cells and failed to improve bacterial clearance and survival.
CONCLUSION - Cutaneous burn injury and infection cause significant adaptive immune dysfunction. IL-15 SA does not augment host resistance to burn wound sepsis in mice despite inducing proliferation and activation of lymphocyte subsets.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Role of G-CSF in monophosphoryl lipid A-mediated augmentation of neutrophil functions after burn injury.
Bohannon JK, Luan L, Hernandez A, Afzal A, Guo Y, Patil NK, Fensterheim B, Sherwood ER
(2016) J Leukoc Biol 99: 629-40
MeSH Terms: Animals, Burns, Granulocyte Colony-Stimulating Factor, Lipid A, Mice, Mice, Inbred BALB C, Neutrophil Infiltration, Neutrophils, Pseudomonas Infections, Pseudomonas aeruginosa, Receptors, CXCR4
Show Abstract · Added February 18, 2016
Infection is the leading cause of death in severely burned patients that survive the acute phase of injury. Neutrophils are the first line of defense against infections, but hospitalized burn patients frequently cannot mount an appropriate innate response to infection. Thus, immune therapeutic approaches aimed at improving neutrophil functions after burn injury may be beneficial. Prophylactic treatment with the TLR4 agonist monophosphoryl lipid A is known to augment resistance to infection by enhancing neutrophil recruitment and facilitating bacterial clearance. This study aimed to define mechanisms by which monophosphoryl lipid A treatment improves bacterial clearance and survival in a model of burn-wound sepsis. Burn-injured mice were treated with monophosphoryl lipid A or vehicle, and neutrophil mobilization was evaluated in the presence or absence of Pseudomonas aeruginosa infection. Monophosphoryl lipid A treatment induced significant mobilization of neutrophils from the bone marrow into the blood and sites of infection. Neutrophil mobilization was associated with decreased bone marrow neutrophil CXCR4 expression and increased plasma G-CSF concentrations. Neutralization of G-CSF before monophosphoryl lipid A administration blocked monophosphoryl lipid A-induced expansion of bone marrow myeloid progenitors and mobilization of neutrophils into the blood and their recruitment to the site of infection. G-CSF neutralization ablated the enhanced bacterial clearance and survival benefit endowed by monophosphoryl lipid A in burn-wound-infected mice. Our findings provide convincing evidence that monophosphoryl lipid A-induced G-CSF facilitates early expansion, mobilization, and recruitment of neutrophils to the site of infection after burn injury, allowing for a robust immune response to infection.
© Society for Leukocyte Biology.
0 Communities
1 Members
0 Resources
11 MeSH Terms
The capability of Pseudomonas aeruginosa to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter.
D'Orazio M, Mastropasqua MC, Cerasi M, Pacello F, Consalvo A, Chirullo B, Mortensen B, Skaar EP, Ciavardelli D, Pasquali P, Battistoni A
(2015) Metallomics 7: 1023-35
MeSH Terms: Alginates, Animals, Bacterial Proteins, Female, Genes, Bacterial, Glucuronic Acid, Hexuronic Acids, Membrane Transport Proteins, Mice, Inbred C57BL, Mutation, Peptide Hydrolases, Pseudomonas Infections, Pseudomonas aeruginosa, Zinc
Show Abstract · Added February 8, 2016
The ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria, ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain. We have found that this mutant strain displays a limited growth defect in zinc depleted media. The znuA mutant strain is more sensitive than the wild type strain to calprotectin-mediated growth inhibition, but both the strains are highly resistant to this zinc sequestering antimicrobial protein. Moreover, intracellular zinc content is not evidently affected by inactivation of the ZnuABC transporter. These findings suggest that P. aeruginosa is equipped with redundant mechanisms for the acquisition of zinc that might favor P. aeruginosa colonization of environments containing low levels of this metal. Nonetheless, deletion of znuA affects alginate production, reduces the activity of extracellular zinc-containing proteases, including LasA, LasB and protease IV, and decreases the ability of P. aeruginosa to disseminate during systemic infections. These results indicate that efficient zinc acquisition is critical for the expression of various virulence features typical of P. aeruginosa and that ZnuABC also plays an important role in zinc homeostasis in this microorganism.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Biochemical characterization of a Pseudomonas aeruginosa phospholipase D.
Spencer C, Brown HA
(2015) Biochemistry 54: 1208-18
MeSH Terms: Bacterial Proteins, Cell Line, Humans, Phospholipase D, Pseudomonas aeruginosa, Sequence Homology, Amino Acid, Species Specificity, Substrate Specificity
Show Abstract · Added February 12, 2015
Phospholipase D is a ubiquitous protein in eukaryotes that hydrolyzes phospholipids to generate the signaling lipid phosphatidic acid (PtdOH). PldA, a Pseudomonas aeruginosa PLD, is a secreted protein that targets bacterial and eukaryotic cells. Here we have characterized the in vitro factors that modulate enzymatic activity of PldA, including divalent cations and phosphoinositides. We have identified several similarities between the eukaryotic-like PldA and the human PLD isoforms, as well as several properties in which the enzymes diverge. Notable differences include the substrate preference and transphosphatidylation efficiency for PldA. These findings offer new insights into potential regulatory mechanisms of PldA and its role in pathogenesis.
0 Communities
1 Members
0 Resources
8 MeSH Terms
The arginine decarboxylase pathways of host and pathogen interact to impact inflammatory pathways in the lung.
Paulson NB, Gilbertsen AJ, Dalluge JJ, Welchlin CW, Hughes J, Han W, Blackwell TS, Laguna TA, Williams BJ
(2014) PLoS One 9: e111441
MeSH Terms: Agmatine, Animals, Biofilms, Carboxy-Lyases, Chromatography, High Pressure Liquid, Disease Models, Animal, Female, Host-Pathogen Interactions, Humans, Inflammation, Longitudinal Studies, Lung, Mice, Mice, Inbred BALB C, Mutagenesis, Mutation, NF-kappa B, Nitric Oxide Synthase, Phenotype, Pneumonia, Bacterial, Prospective Studies, Pseudomonas aeruginosa, Sputum
Show Abstract · Added February 19, 2015
The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic.
1 Communities
1 Members
0 Resources
23 MeSH Terms