Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 48

Publication Record

Connections

Dorsal BNST α-Adrenergic Receptors Produce HCN-Dependent Excitatory Actions That Initiate Anxiogenic Behaviors.
Harris NA, Isaac AT, Günther A, Merkel K, Melchior J, Xu M, Eguakun E, Perez R, Nabit BP, Flavin S, Gilsbach R, Shonesy B, Hein L, Abel T, Baumann A, Matthews R, Centanni SW, Winder DG
(2018) J Neurosci 38: 8922-8942
MeSH Terms: Adrenergic alpha-2 Receptor Agonists, Animals, Anxiety, Catecholamines, Female, Guanfacine, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Male, Mice, Inbred C57BL, Mice, Transgenic, Neurons, Proto-Oncogene Proteins c-fos, Receptors, Adrenergic, alpha-2, Septal Nuclei, Stress, Psychological
Show Abstract · Added March 26, 2019
Stress is a precipitating agent in neuropsychiatric disease and initiates relapse to drug-seeking behavior in addicted patients. Targeting the stress system in protracted abstinence from drugs of abuse with anxiolytics may be an effective treatment modality for substance use disorders. α-adrenergic receptors (α-ARs) in extended amygdala structures play key roles in dampening stress responses. Contrary to early thinking, α-ARs are expressed at non-noradrenergic sites in the brain. These non-noradrenergic α-ARs play important roles in stress responses, but their cellular mechanisms of action are unclear. In humans, the α-AR agonist guanfacine reduces overall craving and uncouples craving from stress, yet minimally affects relapse, potentially due to competing actions in the brain. Here, we show that heteroceptor α-ARs postsynaptically enhance dorsal bed nucleus of the stria terminalis (dBNST) neuronal activity in mice of both sexes. This effect is mediated by hyperpolarization-activated cyclic nucleotide-gated cation channels because inhibition of these channels is necessary and sufficient for excitatory actions. Finally, this excitatory action is mimicked by clozapine--oxide activation of the G-coupled DREADD hM4Di in dBNST neurons and its activation elicits anxiety-like behavior in the elevated plus maze. Together, these data provide a framework for elucidating cell-specific actions of GPCR signaling and provide a potential mechanism whereby competing anxiogenic and anxiolytic actions of guanfacine may affect its clinical utility in the treatment of addiction. Stress affects the development of neuropsychiatric disorders including anxiety and addiction. Guanfacine is an α2A-adrenergic receptor (α2A-AR) agonist with actions in the bed nucleus of the stria terminalis (BNST) that produces antidepressant actions and uncouples stress from reward-related behaviors. Here, we show that guanfacine increases dorsal BNST neuronal activity through actions at postsynaptic α2A-ARs via a mechanism that involves hyperpolarization-activated cyclic nucleotide gated cation channels. This action is mimicked by activation of the designer receptor hM4Di expressed in the BNST, which also induces anxiety-like behaviors. Together, these data suggest that postsynaptic α2A-ARs in BNST have excitatory actions on BNST neurons and that these actions can be phenocopied by the so-called "inhibitory" DREADDs, suggesting that care must be taken regarding interpretation of data obtained with these tools.
Copyright © 2018 the authors 0270-6474/18/388923-21$15.00/0.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents.
Scarlett JM, Rojas JM, Matsen ME, Kaiyala KJ, Stefanovski D, Bergman RN, Nguyen HT, Dorfman MD, Lantier L, Wasserman DH, Mirzadeh Z, Unterman TG, Morton GJ, Schwartz MW
(2016) Nat Med 22: 800-6
MeSH Terms: Adipose Tissue, Animals, Blood Glucose, Blotting, Western, Body Composition, Brain, Carbon Radioisotopes, Deoxyglucose, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 2, Diet, High-Fat, Disease Models, Animal, Ependymoglial Cells, Fibroblast Growth Factor 1, Forkhead Box Protein O1, Glucose Tolerance Test, Heart, Heat-Shock Proteins, Hyperglycemia, Hypothalamus, Injections, Intraventricular, Liver, Male, Mice, Mice, Knockout, Mice, Obese, Molecular Chaperones, Muscle, Skeletal, Myocardium, Neoplasm Proteins, Proto-Oncogene Proteins c-fos, Rats, Rats, Zucker, Real-Time Polymerase Chain Reaction, Receptor, Insulin, Remission Induction
Show Abstract · Added May 16, 2019
Type 2 diabetes (T2D) is among the most common and costly disorders worldwide. The goal of current medical management for T2D is to transiently ameliorate hyperglycemia through daily dosing of one or more antidiabetic drugs. Hypoglycemia and weight gain are common side effects of therapy, and sustained disease remission is not obtainable with nonsurgical approaches. On the basis of the potent glucose-lowering response elicited by activation of brain fibroblast growth factor (FGF) receptors, we explored the antidiabetic efficacy of centrally administered FGF1, which, unlike other FGF peptides, activates all FGF receptor subtypes. We report that a single intracerebroventricular injection of FGF1 at a dose one-tenth of that needed for antidiabetic efficacy following peripheral injection induces sustained diabetes remission in both mouse and rat models of T2D. This antidiabetic effect is not secondary to weight loss, does not increase the risk of hypoglycemia, and involves a novel and incompletely understood mechanism for increasing glucose clearance from the bloodstream. We conclude that the brain has an inherent potential to induce diabetes remission and that brain FGF receptors are potential pharmacological targets for achieving this goal.
0 Communities
1 Members
0 Resources
36 MeSH Terms
Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.
Reddy IA, Pino JA, Weikop P, Osses N, Sørensen G, Bering T, Valle C, Bluett RJ, Erreger K, Wortwein G, Reyes JG, Graham D, Stanwood GD, Hackett TA, Patel S, Fink-Jensen A, Torres GE, Galli A
(2016) Transl Psychiatry 6: e809
MeSH Terms: Animals, Arachidonic Acid, Arachidonic Acids, Cocaine, Dopamine, Dopamine Plasma Membrane Transport Proteins, Dopamine Uptake Inhibitors, Endocannabinoids, Exenatide, Glucagon-Like Peptide-1 Receptor, Glycerides, Homeostasis, Incretins, Mice, Microdialysis, Peptides, Proto-Oncogene Proteins c-fos, Septal Nuclei, Venoms
Show Abstract · Added April 6, 2017
Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Synthesis of bacillithiol and the catalytic selectivity of FosB-type fosfomycin resistance proteins.
Lamers AP, Keithly ME, Kim K, Cook PD, Stec DF, Hines KM, Sulikowski GA, Armstrong RN
(2012) Org Lett 14: 5207-9
MeSH Terms: Bacillus, Biocatalysis, Cysteine, Fosfomycin, Glucosamine, Molecular Structure, Proto-Oncogene Proteins c-fos, Staphylococcus aureus, Substrate Specificity
Show Abstract · Added March 3, 2020
Bacillithiol (BSH) has been prepared on the gram scale from the inexpensive starting material, D-glucosamine hydrochloride, in 11 steps and 8-9% overall yield. The BSH was used to survey the substrate and metal-ion selectivity of FosB enzymes from four Gram-positive microorganisms associated with the deactivation of the antibiotic fosfomycin. The in vitro results indicate that the preferred thiol substrate and metal ion for the FosB from Staphylococcus aureus are BSH and Ni(II), respectively. However, the metal-ion selectivity is less distinct with FosB from Bacillus subtilis, Bacillus anthracis, or Bacillus cereus.
0 Communities
1 Members
0 Resources
MeSH Terms
Modulation of oxidative stress responses in the human retinal pigment epithelium following treatment with vitamin C.
Yin J, Thomas F, Lang JC, Chaum E
(2011) J Cell Physiol 226: 2025-32
MeSH Terms: Activating Transcription Factor 3, Antioxidants, Ascorbic Acid, Biomarkers, Cell Line, Gene Expression Regulation, Humans, Hydrogen Peroxide, Oxidative Stress, Proto-Oncogene Proteins c-fos, Retinal Pigment Epithelium, Transcription Factor AP-1
Show Abstract · Added June 11, 2018
Oxidative stress (OS) in the retina plays an important role in the development and progression of age-related macular degeneration (AMD). Our previous work has shown that OS can quantitatively regulate the expression of AP-1 family genes in the retinal pigment epithelium (RPE). In this study, we sought to determine whether AP-1 genes can be used as cellular biomarkers of OS to evaluate the efficacy of ascorbate, the major aqueous-phase antioxidant in the blood, in reducing OS in RPE cells in vitro. Human ARPE19 cells were pretreated with increasing levels of ascorbate (0-500 µM) for 3 days which was then removed from the medium. OS was induced 24 h later by the addition of hydrogen peroxide for 1-4 h, to bring the final media concentration of H(2)O(2) to 500 µM. FosB, c-Fos, and ATF3 gene expression was examined from 0 to 24 h after OS. Pretreatment with 200 µM ascorbate maximally reduced the transcriptional OS response of AP-1 genes by up to 87% after 1 and 4 h, compared to controls. One hundred micromolar of ascorbate provided a statistically significant, but far more modest effect. Ascorbate supplementation of 100-200 µM appears to strongly inhibit OS-induced activation of AP-1 in vitro, but pretreatment with higher levels of ascorbate conferred no additional advantage. These studies suggest that there are optimal levels of antioxidant supplementation to the RPE in vitro. Laboratory assays based upon transcription factor biomarkers may be useful to define beneficial molecular responses to new antioxidants, alternative dosing regimens, and to explore therapeutic efficacy in OS models in vitro.
Copyright © 2010 Wiley-Liss, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Helicobacter pylori induces ERK-dependent formation of a phospho-c-Fos c-Jun activator protein-1 complex that causes apoptosis in macrophages.
Asim M, Chaturvedi R, Hoge S, Lewis ND, Singh K, Barry DP, Algood HS, de Sablet T, Gobert AP, Wilson KT
(2010) J Biol Chem 285: 20343-57
MeSH Terms: Animals, Anthracenes, Apoptosis, Cell Line, Cell Nucleus, Cell Survival, Extracellular Signal-Regulated MAP Kinases, Flavonoids, Fluorescence Resonance Energy Transfer, Helicobacter Infections, Helicobacter pylori, Host-Pathogen Interactions, Imidazoles, Immunoblotting, Macromolecular Substances, Macrophages, Mice, Mice, Inbred C57BL, Ornithine Decarboxylase, Phosphorylation, Protein Binding, Proto-Oncogene Proteins c-fos, Proto-Oncogene Proteins c-jun, Pyridines, Reverse Transcriptase Polymerase Chain Reaction, Transcription Factor AP-1
Show Abstract · Added March 5, 2014
Macrophages are essential components of innate immunity, and apoptosis of these cells impairs mucosal defense to microbes. Helicobacter pylori is a gastric pathogen that infects half of the world population and causes peptic ulcer disease and gastric cancer. The host inflammatory response fails to eradicate the organism. We have reported that H. pylori induces apoptosis of macrophages by generation of polyamines from ornithine decarboxylase (ODC), which is dependent on c-Myc as a transcriptional enhancer. We have now demonstrated that expression of c-Myc requires phosphorylation and nuclear translocation of ERK, which results in phosphorylation of c-Fos and formation of a specific activator protein (AP)-1 complex. Electromobility shift assay and immunoprecipitation revealed a previously unrecognized complex of phospho-c-Fos (pc-Fos) and c-Jun in the nucleus. Fluorescence resonance energy transfer demonstrated the interaction of pc-Fos and c-Jun. The capacity of this AP-1 complex to bind to putative AP-1 sequences was demonstrated by oligonucleotide pulldown and fluorescence polarization. Binding of the pc-Fos.c-Jun complex to the c-Myc promoter was demonstrated by chromatin immunoprecipitation. A dominant-negative c-Fos inhibited H. pylori-induced expression of c-Myc and ODC and apoptosis. H. pylori infection of mice induced a rapid infiltration of macrophages into the stomach. Concomitant apoptosis depleted these cells, and this was associated with formation of a pc-Fos.c-Jun complex. Treatment of mice with an inhibitor of ERK phosphorylation attenuated phosphorylation of c-Fos, expression of ODC, and apoptosis in gastric macrophages. A unique AP-1 complex in gastric macrophages contributes to the immune escape of H. pylori.
0 Communities
4 Members
0 Resources
26 MeSH Terms
Quantitative AP-1 gene regulation by oxidative stress in the human retinal pigment epithelium.
Chaum E, Yin J, Yang H, Thomas F, Lang JC
(2009) J Cell Biochem 108: 1280-91
MeSH Terms: Cell Line, Gene Expression Regulation, Humans, Oxidative Stress, Proto-Oncogene Proteins c-fos, Proto-Oncogene Proteins c-jun, Retinal Pigment Epithelium, Transcription Factor AP-1, Transcriptional Activation
Show Abstract · Added June 11, 2018
The purpose of this study was to characterize the early molecular responses to quantified levels of oxidative stress (OS) in the human retinal pigment epithelium (RPE). Confluent ARPE-19 cells were cultured for 3 days in defined medium to stabilize gene expression. The cells were exposed to varying levels of OS (0-500 microM H(2)O(2)) for 1-8 h and gene expression was followed for up to 24-h after OS. Using real-time qPCR, we quantified the expression of immediate early genes from the AP-1 transcription factor family and other genes involved in regulating the redox status of the cells. Significant and quantitative changes were seen in the expression of six AP-1 transcription factor genes, FosB, c-Fos, Fra-1, c-Jun, JunB, and ATF3 from 1-8 h following OS. The peak level of induced transcription from OS varied from 2- to 128-fold over the first 4 h, depending on the gene and magnitude of OS. Increased transcription at higher levels of OS was also seen for up to 8-h for some of these genes. Protein translation was examined for 24-h following OS using Western blotting methods, and compared to the qPCR responses. We identified six AP-1 family genes that demonstrate quantitative upregulation of expression in response to OS. Two distinct types of quantifiable OS-specific responses were observed; dose-dependent responses, and threshold responses. Our studies show that different levels of OS can regulate the expression of AP-1 transcription factors quantitatively in the human RPE in vitro.
(c) 2009 Wiley-Liss, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Electrophysiological and pharmacological properties of locomotor activity-related neurons in cfos-EGFP mice.
Dai Y, Carlin KP, Li Z, McMahon DG, Brownstone RM, Jordan LM
(2009) J Neurophysiol 102: 3365-83
MeSH Terms: Acetylcholine, Animals, Animals, Newborn, Biophysics, Electric Stimulation, Ganglia, Spinal, Green Fluorescent Proteins, In Vitro Techniques, Membrane Potentials, Mice, Mice, Transgenic, Motor Activity, N-Methylaspartate, Neurons, Patch-Clamp Techniques, Proto-Oncogene Proteins c-fos, Serotonin, Statistics as Topic
Show Abstract · Added March 18, 2020
Although locomotion is known to be generated by networks of spinal neurons, knowledge of the properties of these neurons is limited. Using neonatal transgenic mice that express enhanced green fluorescent protein (EGFP) driven by the c-fos promoter, we visualized EGFP-positive neurons in spinal cord slices from animals that were subjected to a locomotor task or drug cocktail [N-methyl-D-aspartate, serotonin (5-HT), dopamine, and acetylcholine (ACh)]. The activity-dependent expression of EGFP was also induced in dorsal root ganglion neurons with electrical stimulation of the neurons. Following 60-90 min of swimming, whole cell patch-clamp recordings were made from EGFP+ neurons in laminae VII, VIII, and X from slices of segments T(12) to L(4). The EGFP+ neurons (n = 55) could be classified into three types based on their responses to depolarizing step currents: single spike, phasic firing, and tonic firing. Membrane properties observed in these neurons include hyperpolarization-activated inward currents (29/55), postinhibitory rebound (11/55), and persistent-inward currents (31/55). Bath application of 10-40 microM 5-HT and/or ACh increased neuronal excitability or output with hyperpolarization of voltage threshold and changes in membrane potential. 5-HT also increased input resistance, reduced the afterhyperpolarization (AHP), and induced membrane oscillations, whereas ACh reduced the input resistance and increased the AHP. In this study, we demonstrate a new way of identifying neurons active in locomotion. Our results suggest that the EGFP+ neurons are a heterogeneous population of interneurons. The actions of 5-HT and ACh on these neurons provide insights into the neuronal properties modulated by these transmitters for generation of locomotion.
0 Communities
1 Members
0 Resources
MeSH Terms
NFAT4 deficiency results in incomplete liver regeneration following partial hepatectomy.
Pierre KB, Jones CM, Pierce JM, Nicoud IB, Earl TM, Chari RS
(2009) J Surg Res 154: 226-33
MeSH Terms: Animals, Apoptosis, Bone Morphogenetic Protein 4, Cell Division, Fibroblast Growth Factors, Hepatectomy, JNK Mitogen-Activated Protein Kinases, Liver, Liver Regeneration, Male, Mice, Mice, Inbred BALB C, Mice, Knockout, NFATC Transcription Factors, Proliferating Cell Nuclear Antigen, Proto-Oncogene Proteins c-fos, Signal Transduction, Up-Regulation
Show Abstract · Added January 10, 2014
BACKGROUND - Liver regeneration following partial hepatectomy requires the orchestration of highly regulated molecular pathways; a change in the abundance or activity of a specific gene product has the potential to adversely affect this process. The nuclear factor of activated T-cells (NFAT) transcription factors represent a family of gene transcription signaling intermediates that translate receptor-dependent signaling events into specific transcriptional responses using the Ras/Raf pathway.
MATERIALS AND METHODS - Eight-week old NFAT4 knockout (KO) mice and their wild type counterparts (Balb-c) underwent two-thirds partial hepatectomy. The animals were sacrificed and their livers were harvested at specific time points during regeneration. Recovery of liver mass was measured for each time point. PCR analysis was used to analyze expression levels of the immediate early genes c-fos, c-jun and c-myc as well as downstream effectors of NFAT4 including FGF-18 and BMP-4.
RESULTS - Hepatocyte proliferation and thus liver regeneration following hepatectomy was suppressed in NFAT4 knockout (KO) mice. Statistical significance was reached at 1 h, 7 d, and 10 d (P < 0.05) with a 22% median reduction in regeneration of liver mass in the NFAT4 KO mice by 10 d, at which time liver regeneration should be complete in mice. The immediate early gene c-fos was elevated in NFAT4 KO mice during early regeneration with a median value at 1 h and 1 d of 1.60E-08 and 1.09E-08 versus 6.10E-09 and 1.55E-09 in the Balb-c mice. C-jun, in contrast, was elevated during late regeneration in the NFAT4 KO mice (3.40E-09 and 5.67E-09 at 7 and 10 d, respectively) in comparison with the Balb-c mice (7.76E-10 and 1.24E-09, respectively.). NFAT2 was also up-regulated in the NFAT4 KO mice; however, no changes were detected in its downstream effectors, CCR1 and CCL3.
CONCLUSIONS - We demonstrated that NFAT4 deficiency impairs hepatic regeneration in a murine model proving that NFAT4 plays an important yet unclear role in liver regeneration; its absence may be compensated by c-fos, c-jun, and NFAT2 expression changes.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons.
Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG
(2008) Proc Natl Acad Sci U S A 105: 14181-6
MeSH Terms: Amacrine Cells, Animals, Dopamine, Electrophysiology, Gene Expression Regulation, Mice, Mice, Inbred C57BL, Mice, Transgenic, Nerve Degeneration, Patch-Clamp Techniques, Proto-Oncogene Proteins c-fos, Retinal Ganglion Cells, Rod Opsins, Signal Transduction
Show Abstract · Added August 13, 2010
Retinal dopaminergic amacrine neurons (DA neurons) play a central role in reconfiguring retinal function according to prevailing illumination conditions, yet the mechanisms by which light regulates their activity are poorly understood. We investigated the means by which sustained light responses are evoked in DA neurons. Sustained light responses were driven by cationic currents and persisted in vitro and in vivo in the presence of L-AP4, a blocker of retinal ON-bipolar cells. Several characteristics of these L-AP4-resistant light responses suggested that they were driven by melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), including long latencies, marked poststimulus persistence, and a peak spectral sensitivity of 478 nm. Furthermore, sustained DA neuron light responses, but not transient DA neuron responses, persisted in rod/cone degenerate retinas, in which ipRGCs account for virtually all remaining retinal phototransduction. Thus, ganglion-cell photoreceptors provide excitatory drive to DA neurons, most likely by way of the coramification of their dendrites and the processes of DA neurons in the inner plexiform layer. This unprecedented centrifugal outflow of ganglion-cell signals within the retina provides a novel basis for the restructuring of retinal circuits by light.
1 Communities
1 Members
0 Resources
14 MeSH Terms