Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 353

Publication Record

Connections

Human Gene-Encoded Human Monoclonal Antibodies against Staphylococcus aureus IsdB Use at Least Three Distinct Modes of Binding To Inhibit Bacterial Growth and Pathogenesis.
Bennett MR, Dong J, Bombardi RG, Soto C, Parrington HM, Nargi RS, Schoeder CT, Nagel MB, Schey KL, Meiler J, Skaar EP, Crowe JE
(2019) mBio 10:
MeSH Terms: Adaptive Immunity, Antibodies, Monoclonal, Crystallography, X-Ray, Humans, Immunity, Humoral, Proteomics, Staphylococcus aureus
Show Abstract · Added March 21, 2020
is an important human pathogen that infects nearly every human tissue. Like most organisms, the acquisition of nutrient iron is necessary for its survival. One route by which it obtains this metal is through the iron-regulated surface determinant (Isd) system that scavenges iron from the hemoglobin of the host. We show that the heavy chain variable region gene commonly encodes human monoclonal antibodies (mAbs) targeting IsdB-NEAT2. Remarkably, these antibodies bind to multiple antigenic sites. One class of -encoded mAbs blocks heme acquisition by binding to the heme-binding site of NEAT2, while two additional classes reduce the bacterial burden by an alternative Fc receptor-mediated mechanism. We further identified clonal lineages of -encoded mAbs using donor samples, showing that each lineage diversifies during infection by somatic hypermutation. These studies reveal that encoded antibodies contribute to a protective immune response, furthering our understanding of the correlates of protection against infection. The human pathogen causes a wide range of infections, including skin abscesses and sepsis. There is currently no licensed vaccine to prevent infection, and its treatment has become increasingly difficult due to antibiotic resistance. One potential way to inhibit pathogenesis is to prevent iron acquisition. The iron-regulated surface determinant (Isd) system has evolved in to acquire hemoglobin from the human host as a source of heme-iron. In this study, we investigated the molecular and structural basis for antibody-mediated correlates against a member of the Isd system, IsdB. The association of immunoglobulin heavy chain variable region gene-encoded human monoclonal antibodies with the response against IsdB is described using structural and functional studies to define the importance of this antibody class. We also determine that somatic hypermutation in the development of these antibodies hinders rather than fine-tunes the immune response to IsdB.
Copyright © 2019 Bennett et al.
0 Communities
2 Members
0 Resources
7 MeSH Terms
MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21.
Vilgelm AE, Saleh N, Shattuck-Brandt R, Riemenschneider K, Slesur L, Chen SC, Johnson CA, Yang J, Blevins A, Yan C, Johnson DB, Al-Rohil RN, Halilovic E, Kauffmann RM, Kelley M, Ayers GD, Richmond A
(2019) Sci Transl Med 11:
MeSH Terms: Analysis of Variance, Animals, Blotting, Western, Cell Cycle, Cell Survival, Cyclin-Dependent Kinase 4, Cyclin-Dependent Kinase 6, Cyclin-Dependent Kinase Inhibitor p21, DNA Replication, Dimethyl Sulfoxide, Humans, Immunoprecipitation, MCF-7 Cells, Melanoma, Mice, Mice, Inbred BALB C, Mice, Inbred C57BL, Mice, Nude, Proteomics, Proto-Oncogene Proteins c-mdm2, Radioimmunoprecipitation Assay
Show Abstract · Added September 27, 2019
Intrinsic resistance of unknown mechanism impedes the clinical utility of inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) in malignancies other than breast cancer. Here, we used melanoma patient-derived xenografts (PDXs) to study the mechanisms for CDK4/6i resistance in preclinical settings. We observed that melanoma PDXs resistant to CDK4/6i frequently displayed activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, and inhibition of this pathway improved CDK4/6i response in a p21-dependent manner. We showed that a target of p21, CDK2, was necessary for proliferation in CDK4/6i-treated cells. Upon treatment with CDK4/6i, melanoma cells up-regulated cyclin D1, which sequestered p21 and another CDK inhibitor, p27, leaving a shortage of p21 and p27 available to bind and inhibit CDK2. Therefore, we tested whether induction of p21 in resistant melanoma cells would render them responsive to CDK4/6i. Because p21 is transcriptionally driven by p53, we coadministered CDK4/6i with a murine double minute (MDM2) antagonist to stabilize p53, allowing p21 accumulation. This resulted in improved antitumor activity in PDXs and in murine melanoma. Furthermore, coadministration of CDK4/6 and MDM2 antagonists with standard of care therapy caused tumor regression. Notably, the molecular features associated with response to CDK4/6 and MDM2 inhibitors in PDXs were recapitulated by an ex vivo organotypic slice culture assay, which could potentially be adopted in the clinic for patient stratification. Our findings provide a rationale for cotargeting CDK4/6 and MDM2 in melanoma.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
21 MeSH Terms
MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted Proteomic Studies.
Ryan DJ, Patterson NH, Putnam NE, Wilde AD, Weiss A, Perry WJ, Cassat JE, Skaar EP, Caprioli RM, Spraggins JM
(2019) Anal Chem 91: 7578-7585
MeSH Terms: Animals, Fluorescent Dyes, Kidney, Liquid-Liquid Extraction, Mice, Microscopy, Fluorescence, Peptides, Proteins, Proteomics, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Staphylococcus aureus, Trypsin
Show Abstract · Added January 22, 2020
The ability to target discrete features within tissue using liquid surface extractions enables the identification of proteins while maintaining the spatial integrity of the sample. Here, we present a liquid extraction surface analysis (LESA) workflow, termed microLESA, that allows proteomic profiling from discrete tissue features of ∼110 μm in diameter by integrating nondestructive autofluorescence microscopy and spatially targeted liquid droplet micro-digestion. Autofluorescence microscopy provides the visualization of tissue foci without the need for chemical stains or the use of serial tissue sections. Tryptic peptides are generated from tissue foci by applying small volume droplets (∼250 pL) of enzyme onto the surface prior to LESA. The microLESA workflow reduced the diameter of the sampled area almost 5-fold compared to previous LESA approaches. Experimental parameters, such as tissue thickness, trypsin concentration, and enzyme incubation duration, were tested to maximize proteomics analysis. The microLESA workflow was applied to the study of fluorescently labeled Staphylococcus aureus infected murine kidney to identify unique proteins related to host defense and bacterial pathogenesis. Proteins related to nutritional immunity and host immune response were identified by performing microLESA at the infectious foci and surrounding abscess. These identifications were then used to annotate specific proteins observed in infected kidney tissue by MALDI FT-ICR IMS through accurate mass matching.
0 Communities
3 Members
0 Resources
12 MeSH Terms
Quantitative Interactome Proteomics Reveals a Molecular Basis for ATF6-Dependent Regulation of a Destabilized Amyloidogenic Protein.
Plate L, Rius B, Nguyen B, Genereux JC, Kelly JW, Wiseman RL
(2019) Cell Chem Biol 26: 913-925.e4
MeSH Terms: Activating Transcription Factor 6, Amyloidogenic Proteins, Amyloidosis, Endoplasmic Reticulum, Endoplasmic Reticulum Stress, HEK293 Cells, Humans, Molecular Chaperones, Proteomics, Transcription Factors, Unfolded Protein Response
Show Abstract · Added March 3, 2020
Activation of the unfolded protein response (UPR)-associated transcription factor ATF6 has emerged as a promising strategy to reduce the secretion and subsequent toxic aggregation of destabilized, amyloidogenic proteins implicated in systemic amyloid diseases. However, the molecular mechanism by which ATF6 activation reduces the secretion of amyloidogenic proteins remains poorly defined. We employ a quantitative interactomics platform to define how ATF6 activation reduces secretion of a destabilized, amyloidogenic immunoglobulin light chain (LC) associated with light-chain amyloidosis (AL). Using this platform, we show that ATF6 activation increases the targeting of this destabilized LC to a subset of pro-folding ER proteostasis factors that retains the amyloidogenic LC within the ER, preventing its secretion. Our results define a molecular basis for the ATF6-dependent reduction in destabilized LC secretion and highlight the advantage for targeting this UPR-associated transcription factor to reduce secretion of destabilized, amyloidogenic proteins implicated in AL and related systemic amyloid diseases.
Copyright © 2019 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Effect of environmental salt concentration on the Helicobacter pylori exoproteome.
Caston RR, Loh JT, Voss BJ, McDonald WH, Scholz MB, McClain MS, Cover TL
(2019) J Proteomics 202: 103374
MeSH Terms: Bacterial Proteins, Dose-Response Relationship, Drug, Gene Expression Regulation, Bacterial, Helicobacter pylori, Proteome, Proteomics, Sodium Chloride, Dietary
Show Abstract · Added July 14, 2019
Helicobacter pylori infection and a high salt diet are each risk factors for gastric cancer. In this study, we tested the hypothesis that environmental salt concentration influences the composition of the H. pylori exoproteome. H. pylori was cultured in media containing varying concentrations of sodium chloride, and aliquots were fractionated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified proteins that were selectively released into the extracellular space, and we identified selectively released proteins that were differentially abundant in culture supernatants, depending on the environmental salt concentration. We also used RNA-seq analysis to identify genes that were differentially expressed in response to environmental salt concentration. The salt-responsive proteins identified by proteomic analysis and salt-responsive genes identified by RNA-seq analysis were mostly non-concordant, but the secreted toxin VacA was salt-responsive in both analyses. Western blot analysis confirmed that VacA levels in the culture supernatant were increased in response to high salt conditions, and quantitative RT-qPCR experiments confirmed that vacA transcription was upregulated in response to high salt conditions. These results indicate that environmental salt concentration influences the composition of the H. pylori exoproteome, which could contribute to the increased risk of gastric cancer associated with a high salt diet. SIGNIFICANCE: Helicobacter pylori-induced alterations in the gastric mucosa have been attributed, at least in part, to the actions of secreted H. pylori proteins. In this study, we show that H. pylori growth in high salt concentrations leads to increased levels of a secreted VacA toxin. Salt-induced alterations in the composition of the H. pylori exoproteome is relevant to the increased risk of gastric cancer associated with consumption of a high salt diet.
Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Accelerating Biomarker Discovery Through Electronic Health Records, Automated Biobanking, and Proteomics.
Wells QS, Gupta DK, Smith JG, Collins SP, Storrow AB, Ferguson J, Smith ML, Pulley JM, Collier S, Wang X, Roden DM, Gerszten RE, Wang TJ
(2019) J Am Coll Cardiol 73: 2195-2205
MeSH Terms: Academic Medical Centers, Acceleration, Aged, Automation, Biological Specimen Banks, Biomarkers, Cohort Studies, Electronic Health Records, Female, Heart Failure, Humans, Male, Middle Aged, Proportional Hazards Models, Prospective Studies, Proteomics, Reproducibility of Results, Risk Assessment, Sensitivity and Specificity, Thrombospondins
Show Abstract · Added March 3, 2020
BACKGROUND - Circulating biomarkers can facilitate diagnosis and risk stratification for complex conditions such as heart failure (HF). Newer molecular platforms can accelerate biomarker discovery, but they require significant resources for data and sample acquisition.
OBJECTIVES - The purpose of this study was to test a pragmatic biomarker discovery strategy integrating automated clinical biobanking with proteomics.
METHODS - Using the electronic health record, the authors identified patients with and without HF, retrieved their discarded plasma samples, and screened these specimens using a DNA aptamer-based proteomic platform (1,129 proteins). Candidate biomarkers were validated in 3 different prospective cohorts.
RESULTS - In an automated manner, plasma samples from 1,315 patients (31% with HF) were collected. Proteomic analysis of a 96-patient subset identified 9 candidate biomarkers (p < 4.42 × 10). Two proteins, angiopoietin-2 and thrombospondin-2, were associated with HF in 3 separate validation cohorts. In an emergency department-based registry of 852 dyspneic patients, the 2 biomarkers improved discrimination of acute HF compared with a clinical score (p < 0.0001) or clinical score plus B-type natriuretic peptide (p = 0.02). In a community-based cohort (n = 768), both biomarkers predicted incident HF independent of traditional risk factors and N-terminal pro-B-type natriuretic peptide (hazard ratio per SD increment: 1.35 [95% confidence interval: 1.14 to 1.61; p = 0.0007] for angiopoietin-2, and 1.37 [95% confidence interval: 1.06 to 1.79; p = 0.02] for thrombospondin-2). Among 30 advanced HF patients, concentrations of both biomarkers declined (80% to 84%) following cardiac transplant (p < 0.001 for both).
CONCLUSIONS - A novel strategy integrating electronic health records, discarded clinical specimens, and proteomics identified 2 biomarkers that robustly predict HF across diverse clinical settings. This approach could accelerate biomarker discovery for many diseases.
Copyright © 2019 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Transfer of Functional Cargo in Exomeres.
Zhang Q, Higginbotham JN, Jeppesen DK, Yang YP, Li W, McKinley ET, Graves-Deal R, Ping J, Britain CM, Dorsett KA, Hartman CL, Ford DA, Allen RM, Vickers KC, Liu Q, Franklin JL, Bellis SL, Coffey RJ
(2019) Cell Rep 27: 940-954.e6
MeSH Terms: Amphiregulin, Animals, Cell Line, Tumor, Colonic Neoplasms, Dogs, ErbB Receptors, Exosomes, Humans, Lipids, Madin Darby Canine Kidney Cells, Mice, Mice, Knockout, Nanoparticles, Nucleic Acids, Particle Size, Principal Component Analysis, Proteome, Proteomics, Sialyltransferases
Show Abstract · Added April 24, 2019
Exomeres are a recently discovered type of extracellular nanoparticle with no known biological function. Herein, we describe a simple ultracentrifugation-based method for separation of exomeres from exosomes. Exomeres are enriched in Argonaute 1-3 and amyloid precursor protein. We identify distinct functions of exomeres mediated by two of their cargo, the β-galactoside α2,6-sialyltransferase 1 (ST6Gal-I) that α2,6- sialylates N-glycans, and the EGFR ligand, amphiregulin (AREG). Functional ST6Gal-I in exomeres can be transferred to cells, resulting in hypersialylation of recipient cell-surface proteins including β1-integrin. AREG-containing exomeres elicit prolonged EGFR and downstream signaling in recipient cells, modulate EGFR trafficking in normal intestinal organoids, and dramatically enhance the growth of colonic tumor organoids. This study provides a simplified method of exomere isolation and demonstrates that exomeres contain and can transfer functional cargo. These findings underscore the heterogeneity of nanoparticles and should accelerate advances in determining the composition and biological functions of exomeres.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
19 MeSH Terms
The in vivo specificity of synaptic Gβ and Gγ subunits to the α adrenergic receptor at CNS synapses.
Yim YY, Betke KM, McDonald WH, Gilsbach R, Chen Y, Hyde K, Wang Q, Hein L, Hamm HE
(2019) Sci Rep 9: 1718
MeSH Terms: Animals, Central Nervous System, Epinephrine, GTP-Binding Protein beta Subunits, GTP-Binding Protein gamma Subunits, Gene Knock-In Techniques, Mice, Proteomics, Receptors, Adrenergic, alpha-2, Signal Transduction, Synapses
Show Abstract · Added March 24, 2020
G proteins are major transducers of signals from G-protein coupled receptors (GPCRs). They are made up of α, β, and γ subunits, with 16 Gα, 5 Gβ and 12 Gγ subunits. Though much is known about the specificity of Gα subunits, the specificity of Gβγs activated by a given GPCR and that activate each effector in vivo is not known. Here, we examined the in vivo Gβγ specificity of presynaptic α-adrenergic receptors (αARs) in both adrenergic (auto-αARs) and non-adrenergic neurons (hetero-αARs) for the first time. With a quantitative MRM proteomic analysis of neuronal Gβ and Gγ subunits, and co-immunoprecipitation of tagged αARs from mouse models including transgenic FLAG-αARs and knock-in HA-αARs, we investigated the in vivo specificity of Gβ and Gγ subunits to auto-αARs and hetero-αARs activated with epinephrine to understand the role of Gβγ specificity in diverse physiological functions such as anesthetic sparing, and working memory enhancement. We detected Gβ, Gγ, Gγ, and Gγ with activated auto αARs, whereas we found Gβ and Gγ preferentially interacted with activated hetero-αARs. Further understanding of in vivo Gβγ specificity to various GPCRs offers new insights into the multiplicity of genes for Gβ and Gγ, and the mechanisms underlying GPCR signaling through Gβγ subunits.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs.
Jimenez L, Yu H, McKenzie AJ, Franklin JL, Patton JG, Liu Q, Weaver AM
(2019) J Proteome Res 18: 947-959
MeSH Terms: Cell Adhesion, Cell Adhesion Molecules, Cell Line, Tumor, Chromatography, Liquid, Exosomes, Extracellular Vesicles, Humans, Particle Size, Proteomics, Tandem Mass Spectrometry
Show Abstract · Added April 2, 2019
Extracellular vesicles (EVs) are important mediators of cell-cell communication due to their cargo content of proteins, lipids, and RNAs. We previously reported that small EVs (SEVs) called exosomes promote directed and random cell motility, invasion, and serum-independent growth. In contrast, larger EVs (LEVs) were not active in those assays, but might have unique functional properties. In order to identify protein cargos that may contribute to different functions of SEVs and LEVs, we used isobaric tags for relative and absolute quantitation (iTRAQ)-liquid chromatography (LC) tandem mass spectrometry (MS) on EVs isolated from a colon cancer cell line. Bioinformatics analyses revealed that SEVs are enriched in proteins associated with cell-cell junctions, cell-matrix adhesion, exosome biogenesis machinery, and various signaling pathways. In contrast, LEVs are enriched in proteins associated with ribosome and RNA biogenesis, processing, and metabolism. Western blot analysis of EVs purified from two different cancer cell types confirmed the enrichment of cell-matrix and cell-cell adhesion proteins in SEVs. Consistent with those data, we found that cells exhibit enhanced adhesion to surfaces coated with SEVs compared to an equal protein concentration of LEVs. These data suggest that a major function of SEVs is to promote cellular adhesion.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Probing the Virtual Proteome to Identify Novel Disease Biomarkers.
Mosley JD, Benson MD, Smith JG, Melander O, Ngo D, Shaffer CM, Ferguson JF, Herzig MS, McCarty CA, Chute CG, Jarvik GP, Gordon AS, Palmer MR, Crosslin DR, Larson EB, Carrell DS, Kullo IJ, Pacheco JA, Peissig PL, Brilliant MH, Kitchner TE, Linneman JG, Namjou B, Williams MS, Ritchie MD, Borthwick KM, Kiryluk K, Mentch FD, Sleiman PM, Karlson EW, Verma SS, Zhu Y, Vasan RS, Yang Q, Denny JC, Roden DM, Gerszten RE, Wang TJ
(2018) Circulation 138: 2469-2481
MeSH Terms: Adult, Aged, Aged, 80 and over, Biomarkers, Carotid Artery Diseases, Female, Genome-Wide Association Study, Genotype, Humans, Lectins, C-Type, Male, Middle Aged, Odds Ratio, Phenotype, Polymorphism, Single Nucleotide, Proteome, Proteomics, Receptor, Platelet-Derived Growth Factor beta
Show Abstract · Added April 2, 2019
BACKGROUND - Proteomic approaches allow measurement of thousands of proteins in a single specimen, which can accelerate biomarker discovery. However, applying these technologies to massive biobanks is not currently feasible because of the practical barriers and costs of implementing such assays at scale. To overcome these challenges, we used a "virtual proteomic" approach, linking genetically predicted protein levels to clinical diagnoses in >40 000 individuals.
METHODS - We used genome-wide association data from the Framingham Heart Study (n=759) to construct genetic predictors for 1129 plasma protein levels. We validated the genetic predictors for 268 proteins and used them to compute predicted protein levels in 41 288 genotyped individuals in the Electronic Medical Records and Genomics (eMERGE) cohort. We tested associations for each predicted protein with 1128 clinical phenotypes. Lead associations were validated with directly measured protein levels and either low-density lipoprotein cholesterol or subclinical atherosclerosis in the MDCS (Malmö Diet and Cancer Study; n=651).
RESULTS - In the virtual proteomic analysis in eMERGE, 55 proteins were associated with 89 distinct diagnoses at a false discovery rate q<0.1. Among these, 13 associations involved lipid (n=7) or atherosclerosis (n=6) phenotypes. We tested each association for validation in MDCS using directly measured protein levels. At Bonferroni-adjusted significance thresholds, levels of apolipoprotein E isoforms were associated with hyperlipidemia, and circulating C-type lectin domain family 1 member B and platelet-derived growth factor receptor-β predicted subclinical atherosclerosis. Odds ratios for carotid atherosclerosis were 1.31 (95% CI, 1.08-1.58; P=0.006) per 1-SD increment in C-type lectin domain family 1 member B and 0.79 (0.66-0.94; P=0.008) per 1-SD increment in platelet-derived growth factor receptor-β.
CONCLUSIONS - We demonstrate a biomarker discovery paradigm to identify candidate biomarkers of cardiovascular and other diseases.
0 Communities
2 Members
0 Resources
18 MeSH Terms