, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 160

Publication Record

Connections

Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii.
Wang J, Lonergan ZR, Gonzalez-Gutierrez G, Nairn BL, Maxwell CN, Zhang Y, Andreini C, Karty JA, Chazin WJ, Trinidad JC, Skaar EP, Giedroc DP
(2019) Cell Chem Biol 26: 745-755.e7
MeSH Terms: Acinetobacter baumannii, Bacterial Proteins, Chromatography, High Pressure Liquid, Flavins, Heat-Shock Proteins, Iron, Leukocyte L1 Antigen Complex, Metallochaperones, Proteome, Tandem Mass Spectrometry, Zinc
Show Abstract · Added March 26, 2019
Calprotectin (CP) inhibits bacterial viability through extracellular chelation of transition metals. However, how CP influences general metabolism remains largely unexplored. We show here that CP restricts bioavailable Zn and Fe to the pathogen Acinetobacter baumannii, inducing an extensive multi-metal perturbation of cellular physiology. Proteomics reveals severe metal starvation, and a strain lacking the candidate Zn metallochaperone ZigA possesses altered cellular abundance of multiple essential Zn-dependent enzymes and enzymes in de novo flavin biosynthesis. The ΔzigA strain exhibits decreased cellular flavin levels during metal starvation. Flavin mononucleotide provides regulation of this biosynthesis pathway, via a 3,4-dihydroxy-2-butanone 4-phosphate synthase (RibB) fusion protein, RibBX, and authentic RibB. We propose that RibBX ensures flavin sufficiency under CP-induced Fe limitation, allowing flavodoxins to substitute for Fe-ferredoxins as cell reductants. These studies elucidate adaptation to nutritional immunity and define an intersection between metallostasis and cellular metabolism in A. baumannii.
Copyright © 2019 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Probing the Virtual Proteome to Identify Novel Disease Biomarkers.
Mosley JD, Benson MD, Smith JG, Melander O, Ngo D, Shaffer CM, Ferguson JF, Herzig MS, McCarty CA, Chute CG, Jarvik GP, Gordon AS, Palmer MR, Crosslin DR, Larson EB, Carrell DS, Kullo IJ, Pacheco JA, Peissig PL, Brilliant MH, Kitchner TE, Linneman JG, Namjou B, Williams MS, Ritchie MD, Borthwick KM, Kiryluk K, Mentch FD, Sleiman PM, Karlson EW, Verma SS, Zhu Y, Vasan RS, Yang Q, Denny JC, Roden DM, Gerszten RE, Wang TJ
(2018) Circulation 138: 2469-2481
MeSH Terms: Adult, Aged, Aged, 80 and over, Biomarkers, Carotid Artery Diseases, Female, Genome-Wide Association Study, Genotype, Humans, Lectins, C-Type, Male, Middle Aged, Odds Ratio, Phenotype, Polymorphism, Single Nucleotide, Proteome, Proteomics, Receptor, Platelet-Derived Growth Factor beta
Show Abstract · Added April 2, 2019
BACKGROUND - Proteomic approaches allow measurement of thousands of proteins in a single specimen, which can accelerate biomarker discovery. However, applying these technologies to massive biobanks is not currently feasible because of the practical barriers and costs of implementing such assays at scale. To overcome these challenges, we used a "virtual proteomic" approach, linking genetically predicted protein levels to clinical diagnoses in >40 000 individuals.
METHODS - We used genome-wide association data from the Framingham Heart Study (n=759) to construct genetic predictors for 1129 plasma protein levels. We validated the genetic predictors for 268 proteins and used them to compute predicted protein levels in 41 288 genotyped individuals in the Electronic Medical Records and Genomics (eMERGE) cohort. We tested associations for each predicted protein with 1128 clinical phenotypes. Lead associations were validated with directly measured protein levels and either low-density lipoprotein cholesterol or subclinical atherosclerosis in the MDCS (Malmö Diet and Cancer Study; n=651).
RESULTS - In the virtual proteomic analysis in eMERGE, 55 proteins were associated with 89 distinct diagnoses at a false discovery rate q<0.1. Among these, 13 associations involved lipid (n=7) or atherosclerosis (n=6) phenotypes. We tested each association for validation in MDCS using directly measured protein levels. At Bonferroni-adjusted significance thresholds, levels of apolipoprotein E isoforms were associated with hyperlipidemia, and circulating C-type lectin domain family 1 member B and platelet-derived growth factor receptor-β predicted subclinical atherosclerosis. Odds ratios for carotid atherosclerosis were 1.31 (95% CI, 1.08-1.58; P=0.006) per 1-SD increment in C-type lectin domain family 1 member B and 0.79 (0.66-0.94; P=0.008) per 1-SD increment in platelet-derived growth factor receptor-β.
CONCLUSIONS - We demonstrate a biomarker discovery paradigm to identify candidate biomarkers of cardiovascular and other diseases.
0 Communities
2 Members
0 Resources
18 MeSH Terms
Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.
Heaven MR, Cobbs AL, Nei YW, Gutierrez DB, Herren AW, Gunawardena HP, Caprioli RM, Norris JL
(2018) Anal Chem 90: 8905-8911
MeSH Terms: Algorithms, Chromatography, Liquid, Databases, Protein, Escherichia coli, Escherichia coli Proteins, HeLa Cells, High-Throughput Screening Assays, Humans, Peptides, Proteome, Proteomics, Software, Tandem Mass Spectrometry, Workflow
Show Abstract · Added August 27, 2018
State-of-the-art strategies for proteomics are not able to rapidly interrogate complex peptide mixtures in an untargeted manner with sensitive peptide and protein identification rates. We describe a data-independent acquisition (DIA) approach, microDIA (μDIA), that applies a novel tandem mass spectrometry (MS/MS) mass spectral deconvolution method to increase the specificity of tandem mass spectra acquired during proteomics experiments. Using the μDIA approach with a 10 min liquid chromatography gradient allowed detection of 3.1-fold more HeLa proteins than the results obtained from data-dependent acquisition (DDA) of the same samples. Additionally, we found the μDIA MS/MS deconvolution procedure is critical for resolving modified peptides with relatively small precursor mass shifts that cause the same peptide sequence in modified and unmodified forms to theoretically cofragment in the same raw MS/MS spectra. The μDIA workflow is implemented in the PROTALIZER software tool which fully automates tandem mass spectral deconvolution, queries every peptide with a library-free search algorithm against a user-defined protein database, and confidently identifies multiple peptides in a single tandem mass spectrum. We also benchmarked μDIA against DDA using a 90 min gradient analysis of HeLa and Escherichia coli peptides that were mixed in predefined quantitative ratios, and our results showed μDIA provided 24% more true positives at the same false positive rate.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Urinary Peptides As a Novel Source of T Cell Allergen Epitopes.
da Silva Antunes R, Pham J, McMurtrey C, Hildebrand WH, Phillips E, Mallal S, Sidney J, Busse P, Peters B, Schulten V, Sette A
(2018) Front Immunol 9: 886
MeSH Terms: Adult, Allergens, Animals, Asthma, Epitopes, T-Lymphocyte, Female, Humans, Immunoglobulin E, Male, Mice, Middle Aged, Peptides, Proteome, Proteomics, Rhinitis, Allergic, T-Lymphocytes
Show Abstract · Added March 30, 2020
Mouse allergy in both laboratory workers and in inner-city children is associated with allergic rhinitis and asthma, posing a serious public health concern. Urine is a major source of mouse allergens, as mice spray urine onto their surroundings, where the proteins dry up and become airborne on dust particles. Here, we tested whether oligopeptides that are abundant in mouse urine may contribute to mouse allergic T cell response. Over 1,300 distinct oligopeptides were detected by mass spectrometry analysis of the low molecular weight filtrate fraction of mouse urine (LoMo). Posttranslationally modified peptides were common, accounting for almost half of total peptides. A pool consisting of 225 unique oligopeptides of 13 residues or more in size identified within was tested for its capacity to elicit T cell reactivity in mouse allergic donors. Following 14-day stimulation of PBMCs, we detected responses in about 95% of donors tested, directed against 116 distinct peptides, predominantly associated with Th2 cytokines (IL-5). Peptides from non-urine related proteins such as epidermal growth factor, collagen, and Beta-globin accounted for the highest response (15.9, 9.1, and 8.1% of the total response, respectively). Peptides derived from major urinary proteins (MUPs), kidney androgen-regulated protein (KAP), and uromodulin were the main T cell targets from kidney or urine related sources. Further analysis of enrichment of 4-1BB expressing cells demonstrated that LoMo pool-specific T cell reactivity can be detected directly in mouse allergic but not in non-allergic donors. Further cytometric analysis of responding cells revealed a bone fide memory T cell phenotype and confirmed their Th2 polarization. Overall, these data suggest that mouse urine-derived oligopeptides are a novel target for mouse allergy-associated T cell responses, which may contribute to immunopathological mechanisms in mouse allergy.
0 Communities
1 Members
0 Resources
MeSH Terms
Amyloid Accumulation Drives Proteome-wide Alterations in Mouse Models of Alzheimer's Disease-like Pathology.
Savas JN, Wang YZ, DeNardo LA, Martinez-Bartolome S, McClatchy DB, Hark TJ, Shanks NF, Cozzolino KA, Lavallée-Adam M, Smukowski SN, Park SK, Kelly JW, Koo EH, Nakagawa T, Masliah E, Ghosh A, Yates JR
(2017) Cell Rep 21: 2614-2627
MeSH Terms: Alzheimer Disease, Amyloid beta-Peptides, Animals, Apolipoproteins E, Brain, Calcium Channels, Computational Biology, Female, Mass Spectrometry, Mice, Mice, Inbred C57BL, Proteome
Show Abstract · Added March 21, 2018
Amyloid beta (Aβ) peptides impair multiple cellular pathways and play a causative role in Alzheimer's disease (AD) pathology, but how the brain proteome is remodeled by this process is unknown. To identify protein networks associated with AD-like pathology, we performed global quantitative proteomic analysis in three mouse models at young and old ages. Our analysis revealed a robust increase in Apolipoprotein E (ApoE) levels in nearly all brain regions with increased Aβ levels. Taken together with prior findings on ApoE driving Aβ accumulation, this analysis points to a pathological dysregulation of the ApoE-Aβ axis. We also found dysregulation of protein networks involved in excitatory synaptic transmission. Analysis of the AMPA receptor (AMPAR) complex revealed specific loss of TARPγ-2, a key AMPAR-trafficking protein. Expression of TARPγ-2 in hAPP transgenic mice restored AMPA currents. This proteomic database represents a resource for the identification of protein alterations responsible for AD.
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Hydrogen Sulfide and Reactive Sulfur Species Impact Proteome S-Sulfhydration and Global Virulence Regulation in Staphylococcus aureus.
Peng H, Zhang Y, Palmer LD, Kehl-Fie TE, Skaar EP, Trinidad JC, Giedroc DP
(2017) ACS Infect Dis 3: 744-755
MeSH Terms: Gene Expression Regulation, Bacterial, Hydrogen Sulfide, Proteome, Staphylococcus aureus, Sulfur, Virulence
Show Abstract · Added September 23, 2017
Hydrogen sulfide (HS) is thought to protect bacteria from oxidative stress, but a comprehensive understanding of its function in bacteria is largely unexplored. In this study, we show that the human pathogen Staphylococcus aureus (S. aureus) harbors significant effector molecules of HS signaling, reactive sulfur species (RSS), as low molecular weight persulfides of bacillithiol, coenzyme A, and cysteine, and significant inorganic polysulfide species. We find that proteome S-sulfhydration, a post-translational modification (PTM) in HS signaling, is widespread in S. aureus. RSS levels modulate the expression of secreted virulence factors and the cytotoxicity of the secretome, consistent with an S-sulfhydration-dependent inhibition of DNA binding by MgrA, a global virulence regulator. Two previously uncharacterized thioredoxin-like proteins, denoted TrxP and TrxQ, are S-sulfhydrated in sulfide-stressed cells and are capable of reducing protein hydrodisulfides, suggesting that this PTM is potentially regulatory in S. aureus. In conclusion, our results reveal that S. aureus harbors a pool of proteome- and metabolite-derived RSS capable of impacting protein activities and gene regulation and that HS signaling can be sensed by global regulators to affect the expression of virulence factors.
0 Communities
2 Members
0 Resources
6 MeSH Terms
Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma.
Cancer Genome Atlas Research Network. Electronic address: andrew_aguirre@dfci.harvard.edu, Cancer Genome Atlas Research Network
(2017) Cancer Cell 32: 185-203.e13
MeSH Terms: Carcinoma, Pancreatic Ductal, DNA Methylation, Epigenesis, Genetic, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Genomics, Humans, Mutation, Pancreatic Neoplasms, Proteome, Proto-Oncogene Proteins p21(ras), Transcriptome
Show Abstract · Added October 30, 2019
We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Regulating Secretory Proteostasis through the Unfolded Protein Response: From Function to Therapy.
Plate L, Wiseman RL
(2017) Trends Cell Biol 27: 722-737
MeSH Terms: Activating Transcription Factor 6, Animals, Biological Transport, Endoplasmic Reticulum Stress, Humans, Proteome, Proteostasis, Repressor Proteins, Secretory Pathway, Signal Transduction, Unfolded Protein Response
Show Abstract · Added March 3, 2020
Imbalances in secretory proteostasis induced by genetic, environmental, or aging-related insults are pathologically associated with etiologically diverse protein misfolding diseases. To protect the secretory proteome from these insults, organisms evolved stress-responsive signaling pathways that regulate the composition and activity of biologic pathways involved in secretory proteostasis maintenance. The most prominent of these is the endoplasmic reticulum (ER) unfolded protein response (UPR), which functions to regulate ER proteostasis in response to ER stress. While the signaling mechanisms involved in UPR activation are well defined, the impact of UPR activation on secretory proteostasis is only now becoming clear. Here, we highlight recent reports defining how activation of select UPR signaling pathways influences proteostasis within the ER and downstream secretory environments. Furthermore, we describe recent evidence that highlights the therapeutic potential for targeting UPR signaling pathways to correct pathologic disruption in secretory proteostasis associated with diverse types of protein misfolding diseases.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity.
Wang J, Mouradov D, Wang X, Jorissen RN, Chambers MC, Zimmerman LJ, Vasaikar S, Love CG, Li S, Lowes K, Leuchowius KJ, Jousset H, Weinstock J, Yau C, Mariadason J, Shi Z, Ban Y, Chen X, Coffey RJC, Slebos RJC, Burgess AW, Liebler DC, Zhang B, Sieber OM
(2017) Gastroenterology 153: 1082-1095
MeSH Terms: Antineoplastic Agents, Biomarkers, Tumor, Cell Line, Tumor, Chromatography, Liquid, Colorectal Neoplasms, Databases, Protein, Dose-Response Relationship, Drug, Drug Screening Assays, Antitumor, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Mutation, Neoplasm Proteins, Patient Selection, Polymorphism, Single Nucleotide, Precision Medicine, Proteome, Proteomics, Signal Transduction, Stromal Cells, Tandem Mass Spectrometry, Transcriptome, Tumor Microenvironment
Show Abstract · Added July 17, 2017
BACKGROUND AND AIMS - Proteomics holds promise for individualizing cancer treatment. We analyzed to what extent the proteomic landscape of human colorectal cancer (CRC) is maintained in established CRC cell lines and the utility of proteomics for predicting therapeutic responses.
METHODS - Proteomic and transcriptomic analyses were performed on 44 CRC cell lines, compared against primary CRCs (n=95) and normal tissues (n=60), and integrated with genomic and drug sensitivity data.
RESULTS - Cell lines mirrored the proteomic aberrations of primary tumors, in particular for intrinsic programs. Tumor relationships of protein expression with DNA copy number aberrations and signatures of post-transcriptional regulation were recapitulated in cell lines. The 5 proteomic subtypes previously identified in tumors were represented among cell lines. Nonetheless, systematic differences between cell line and tumor proteomes were apparent, attributable to stroma, extrinsic signaling, and growth conditions. Contribution of tumor stroma obscured signatures of DNA mismatch repair identified in cell lines with a hypermutation phenotype. Global proteomic data showed improved utility for predicting both known drug-target relationships and overall drug sensitivity as compared with genomic or transcriptomic measurements. Inhibition of targetable proteins associated with drug responses further identified corresponding synergistic or antagonistic drug combinations. Our data provide evidence for CRC proteomic subtype-specific drug responses.
CONCLUSIONS - Proteomes of established CRC cell line are representative of primary tumors. Proteomic data tend to exhibit improved prediction of drug sensitivity as compared with genomic and transcriptomic profiles. Our integrative proteogenomic analysis highlights the potential of proteome profiling to inform personalized cancer medicine.
Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Proteomics show antigen presentation processes in human immune cells after AS03-H5N1 vaccination.
Galassie AC, Goll JB, Samir P, Jensen TL, Hoek KL, Howard LM, Allos TM, Niu X, Gordy LE, Creech CB, Hill H, Joyce S, Edwards KM, Link AJ
(2017) Proteomics 17:
MeSH Terms: Adjuvants, Immunologic, Antigen Presentation, B-Lymphocytes, Cells, Cultured, Humans, Influenza A Virus, H5N1 Subtype, Influenza Vaccines, Influenza, Human, Killer Cells, Natural, Monocytes, Neutrophils, Protein Interaction Maps, Proteome, Proteomics, T-Lymphocytes
Show Abstract · Added August 15, 2017
Adjuvants enhance immunity elicited by vaccines through mechanisms that are poorly understood. Using a systems biology approach, we investigated temporal protein expression changes in five primary human immune cell populations: neutrophils, monocytes, natural killer cells, T cells, and B cells after administration of either an Adjuvant System 03 adjuvanted or unadjuvanted split-virus H5N1 influenza vaccine. Monocytes demonstrated the strongest differential signal between vaccine groups. On day 3 post-vaccination, several antigen presentation-related pathways, including MHC class I-mediated antigen processing and presentation, were enriched in monocytes and neutrophils and expression of HLA class I proteins was increased in the Adjuvant System 03 group. We identified several protein families whose proteomic responses predicted seroprotective antibody responses (>1:40 hemagglutination inhibition titer), including inflammation and oxidative stress proteins at day 1 as well as immunoproteasome subunit (PSME1 and PSME2) and HLA class I proteins at day 3 in monocytes. While comparison between temporal proteomic and transcriptomic results showed little overlap overall, enrichment of the MHC class I antigen processing and presentation pathway in monocytes and neutrophils was confirmed by both approaches.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1 Communities
0 Members
0 Resources
15 MeSH Terms