Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 9280

Publication Record

Connections

Molecular Architecture of the Helicobacter pylori Cag Type IV Secretion System.
Hu B, Khara P, Song L, Lin AS, Frick-Cheng AE, Harvey ML, Cover TL, Christie PJ
(2019) MBio 10:
MeSH Terms: Antigens, Bacterial, Bacterial Proteins, Cryoelectron Microscopy, Genomic Islands, Helicobacter pylori, Humans, Type IV Secretion Systems
Show Abstract · Added July 14, 2019
colonizes about half of humans worldwide, and its presence in the gastric mucosa is associated with an increased risk of gastric adenocarcinoma, gastric lymphoma, and peptic ulcer disease. strains carrying the pathogenicity island (PAI) are associated with increased risk of disease progression. The PAI encodes the Cag type IV secretion system (Cag), which delivers the CagA oncoprotein and other effector molecules into human gastric epithelial cells. We visualized structures of native and mutant Cag machines on the cell envelope by cryoelectron tomography. Individual cells contain multiple Cag nanomachines, each composed of a wheel-shaped outer membrane complex (OMC) with 14-fold symmetry and an inner membrane complex (IMC) with 6-fold symmetry. CagX, CagY, and CagM are required for assembly of the OMC, whereas strains lacking Cag3 and CagT produce outer membrane complexes lacking peripheral components. The IMC, which has never been visualized in detail, is configured as six tiers in cross-section view and three concentric rings surrounding a central channel in end-on view. The IMC contains three T4SS ATPases: (i) VirB4-like CagE, arranged as a hexamer of dimers at the channel entrance; (ii) a hexamer of VirB11-like Cagα, docked at the base of the CagE hexamer; and (iii) VirD4-like Cagβ and other unspecified Cag subunits, associated with the stacked CagE/Cagα complex and forming the outermost rings. The Cag and recently solved Dot/Icm system comprise new structural prototypes for the T4SS superfamily. Bacterial type IV secretion systems (T4SSs) have been phylogenetically grouped into two subfamilies. The T4ASSs, represented by the VirB/VirD4, include "minimized" machines assembled from 12 VirB- and VirD4-like subunits and compositionally larger systems such as the Cag T4BSSs encompass systems closely related in subunit composition to the Dot/Icm Here, we present structures of native and mutant Cag machines determined by cryoelectron tomography. We identify distinct outer and inner membrane complexes and, for the first time, visualize structural contributions of all three "signature" ATPases of T4SSs at the cytoplasmic entrance of the translocation channel. Despite their evolutionary divergence, the Cag aligns structurally much more closely to the Dot/Icm than an available VirB/VirD4 subcomplex. Our findings highlight the diversity of T4SSs and suggest a structural classification scheme in which T4SSs are grouped as minimized VirB/VirD4-like or larger Cag-like and Dot/Icm-like systems.
Copyright © 2019 Hu et al.
0 Communities
1 Members
0 Resources
MeSH Terms
Using In Vitro Pull-Down and In-Cell Overexpression Assays to Study Protein Interactions with Arrestin.
Perry NA, Zhan X, Gurevich EV, Iverson TM, Gurevich VV
(2019) Methods Mol Biol 1957: 107-120
MeSH Terms: Animals, Arrestin, Biological Assay, COS Cells, Cercopithecus aethiops, HEK293 Cells, Humans, Immobilized Proteins, Mice, Protein Binding, Protein Interaction Mapping, Recombinant Fusion Proteins
Show Abstract · Added April 1, 2019
Nonvisual arrestins (arrestin-2/arrestin-3) interact with hundreds of G protein-coupled receptor (GPCR) subtypes and dozens of non-receptor signaling proteins. Here we describe the methods used to identify the interaction sites of arrestin-binding partners on arrestin-3 and the use of monofunctional individual arrestin-3 elements in cells. Our in vitro pull-down assay with purified proteins demonstrates that relatively few elements in arrestin engage each partner, whereas cell-based functional assays indicate that certain arrestin elements devoid of other functionalities can perform individual functions in living cells.
0 Communities
1 Members
0 Resources
12 MeSH Terms
VacA Targets Myeloid Cells in the Gastric Lamina Propria To Promote Peripherally Induced Regulatory T-Cell Differentiation and Persistent Infection.
Altobelli A, Bauer M, Velez K, Cover TL, Müller A
(2019) MBio 10:
MeSH Terms: Animals, Bacterial Proteins, Cell Differentiation, Dendritic Cells, Disease Models, Animal, Gastric Mucosa, Helicobacter Infections, Helicobacter pylori, Immune Evasion, Interleukin-10, Interleukin-23, Lung, Macrophages, Mice, Mucous Membrane, Myeloid Cells, T-Lymphocytes, Regulatory, Transforming Growth Factor beta
Show Abstract · Added April 11, 2019
The gastric bacterium causes a persistent infection that is directly responsible for gastric ulcers and gastric cancer in some patients and protective against allergic and other immunological disorders in others. The two outcomes of the -host interaction can be modeled in mice that are infected as immunocompetent adults and as neonates, respectively. Here, we have investigated the contribution of the immunomodulator VacA to -specific local and systemic immune responses in both models. We found that neonatally infected mice are colonized at higher levels than mice infected as adults and fail to generate effector T-cell responses to the bacteria; rather, T-cell responses in neonatally infected mice are skewed toward Foxp3-positive (Foxp3) regulatory T cells that are neuropilin negative and express RORγt. We found these peripherally induced regulatory T cells (pTregs) to be enriched, in a VacA-dependent manner, not only in the gastric mucosa but also in the lungs of infected mice. Pulmonary pTreg accumulation was observed in mice that have been infected neonatally with wild-type but not in mice that have been infected as adults or mice infected with a VacA null mutant. Finally, we traced VacA to gastric lamina propria myeloid cells and show that it suppressed interleukin-23 (IL-23) expression by dendritic cells and induced IL-10 and TGF-β expression in macrophages. Taken together, the results are consistent with the idea that creates a tolerogenic environment through its immunomodulator VacA, which skews T-cell responses toward Tregs, favors persistence, and affects immunity at distant sites. has coexisted with humans for at least 60.000 years and has evolved persistence strategies that allow it to evade host immunity and colonize its host for life. The VacA protein is expressed by all strains and is required for high-level persistent infection in experimental mouse models. Here, we show that VacA targets myeloid cells in the gastric mucosa to create a tolerogenic environment that facilitates regulatory T-cell differentiation, while suppressing effector T-cell priming and functionality. Tregs that are induced in the periphery during infection can be found not only in the stomach but also in the lungs of infected mice, where they are likely to affect immune responses to allergens.
Copyright © 2019 Altobelli et al.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Cuts Both Ways: Proteases Modulate Virulence of Enterohemorrhagic .
Palmer LD, Skaar EP
(2019) MBio 10:
MeSH Terms: Enterohemorrhagic Escherichia coli, Escherichia coli Proteins, Humans, Microbiota, Peptide Hydrolases, Virulence
Show Abstract · Added April 2, 2019
Enterohemorrhagic (EHEC) is a major cause of foodborne gastrointestinal illness. EHEC uses a specialized type III secretion system (T3SS) to form attaching and effacing lesions in the colonic epithelium and outcompete commensal gut microbiota to cause disease. A recent report in (E. A. Cameron, M. M. Curtis, A. Kumar, G. M. Dunny, et al., mBio 9:e02204-18, 2018, https://doi.org/10.1128/mBio.02204-18) describes a new role for gut commensals in potentiating disease caused by EHEC. Proteases produced by EHEC and the prevalent human commensal cleave proteins in the EHEC T3SS translocon that modulate T3SS function. protease activity promotes translocation of bacterial effectors required for lesion formation. These results describe a new role for the microbiota in gastrointestinal disease that could uncover future treatments to prevent the spread of gastroenteritis.
Copyright © 2019 Palmer and Skaar.
0 Communities
1 Members
0 Resources
MeSH Terms
Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of .
Grunenwald CM, Choby JE, Juttukonda LJ, Beavers WN, Weiss A, Torres VJ, Skaar EP
(2019) MBio 10:
MeSH Terms: Animals, Cation Transport Proteins, Disease Models, Animal, Gene Expression Regulation, Bacterial, Homeostasis, Iron, Manganese, Mice, Inbred BALB C, Microbial Viability, Oxidative Stress, Staphylococcal Infections, Staphylococcus aureus, Transcription Factors, Transcription, Genetic, Virulence
Show Abstract · Added April 2, 2019
Manganese (Mn) is an essential micronutrient critical for the pathogenesis of , a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in , MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the Mn uptake system. Inactivation of or leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, and are required for full virulence of during infection, suggesting experiences Mn toxicity Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of and induction of , both of which are critical for pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis. Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of leads to a significant reduction in resistance to oxidative stress and mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and virulence. Therefore, this establishes MntE as a potential target for development of anti- therapeutics.
Copyright © 2019 Grunenwald et al.
0 Communities
1 Members
0 Resources
15 MeSH Terms
α-Difluoromethylornithine reduces gastric carcinogenesis by causing mutations in .
Sierra JC, Suarez G, Piazuelo MB, Luis PB, Baker DR, Romero-Gallo J, Barry DP, Schneider C, Morgan DR, Peek RM, Gobert AP, Wilson KT
(2019) Proc Natl Acad Sci U S A 116: 5077-5085
MeSH Terms: Animals, Bacterial Proteins, Carcinogenesis, DNA Damage, Eflornithine, Gene Deletion, Gene Rearrangement, Gerbillinae, Helicobacter pylori, Male, Mutation, Oxidative Stress, RNA, Messenger, Stomach Neoplasms, Virulence
Show Abstract · Added February 26, 2019
Infection by is the primary cause of gastric adenocarcinoma. The most potent virulence factor is cytotoxin-associated gene A (CagA), which is translocated by a type 4 secretion system (T4SS) into gastric epithelial cells and activates oncogenic signaling pathways. The gene encodes for a key component of the T4SS and can undergo gene rearrangements. We have shown that the cancer chemopreventive agent α-difluoromethylornithine (DFMO), known to inhibit the enzyme ornithine decarboxylase, reduces -mediated gastric cancer incidence in Mongolian gerbils. In the present study, we questioned whether DFMO might directly affect pathogenicity. We show that output strains isolated from gerbils treated with DFMO exhibit reduced ability to translocate CagA in gastric epithelial cells. Further, we frequently detected genomic modifications in the middle repeat region of the gene of output strains from DFMO-treated animals, which were associated with alterations in the CagY protein. Gerbils did not develop carcinoma when infected with a DFMO output strain containing rearranged or the parental strain in which the wild-type was replaced by with DFMO-induced rearrangements. Lastly, we demonstrate that in vitro treatment of by DFMO induces oxidative DNA damage, expression of the DNA repair enzyme MutS2, and mutations in , demonstrating that DFMO directly affects genomic stability. Deletion of abrogated the ability of DFMO to induce rearrangements directly. In conclusion, DFMO-induced oxidative stress in leads to genomic alterations and attenuates virulence.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Myosin IIA drives membrane bleb retraction.
Taneja N, Burnette DT
(2019) Mol Biol Cell 30: 1051-1059
MeSH Terms: Actins, Animals, Blister, COS Cells, Cell Membrane, Cell Membrane Structures, Cell Movement, Cell Surface Extensions, Cercopithecus aethiops, Cytokinesis, Cytoplasm, Cytoskeletal Proteins, HeLa Cells, Humans, Myosin Type II, Nerve Tissue Proteins, Nonmuscle Myosin Type IIA, Nonmuscle Myosin Type IIB
Show Abstract · Added March 27, 2019
Membrane blebs are specialized cellular protrusions that play diverse roles in processes such as cell division and cell migration. Blebbing can be divided into three distinct phases: bleb nucleation, bleb growth, and bleb retraction. Following nucleation and bleb growth, the actin cortex, comprising actin, cross-linking proteins, and nonmuscle myosin II (MII), begins to reassemble on the membrane. MII then drives the final phase, bleb retraction, which results in reintegration of the bleb into the cellular cortex. There are three MII paralogues with distinct biophysical properties expressed in mammalian cells: MIIA, MIIB, and MIIC. Here we show that MIIA specifically drives bleb retraction during cytokinesis. The motor domain and regulation of the nonhelical tailpiece of MIIA both contribute to its ability to drive bleb retraction. These experiments have also revealed a relationship between faster turnover of MIIA at the cortex and its ability to drive bleb retraction.
0 Communities
1 Members
0 Resources
18 MeSH Terms
S100 Proteins in the Innate Immune Response to Pathogens.
Kozlyuk N, Monteith AJ, Garcia V, Damo SM, Skaar EP, Chazin WJ
(2019) Methods Mol Biol 1929: 275-290
MeSH Terms: Calcium, Host-Pathogen Interactions, Humans, Immunity, Innate, Inflammation, Manganese, Models, Molecular, Protein Conformation, S100 Proteins, Toll-Like Receptor 4
Show Abstract · Added March 26, 2019
S100 proteins are distinct dimeric EF-hand Ca-binding proteins that can bind Zn, Mn, and other transition metals with high affinity at two sites in the dimer interface. Certain S100 proteins, including S100A7, S100A12, S100A8, and S100A9, play key roles in the innate immune response to pathogens. These proteins function via a "nutritional immunity" mechanism by depleting essential transition metals in the infection that are required for the invading organism to grow and thrive. They also act as damage-associated molecular pattern ligands, which activate pattern recognition receptors (e.g., Toll-like receptor 4, RAGE) that mediate inflammation. Here we present protocols for these S100 proteins for high-level production of recombinant protein, measurement of binding affinities using isothermal titration calorimetry, and an assay of antimicrobial activity.
0 Communities
2 Members
0 Resources
10 MeSH Terms
Intracellular Degradation of Helicobacter pylori VacA Toxin as a Determinant of Gastric Epithelial Cell Viability.
Foegeding NJ, Raghunathan K, Campbell AM, Kim SW, Lau KS, Kenworthy AK, Cover TL, Ohi MD
(2019) Infect Immun 87:
MeSH Terms: Autophagy, Bacterial Proteins, Cell Line, Cell Survival, Epithelial Cells, Gastric Mucosa, Helicobacter Infections, Helicobacter pylori, Humans, Hydrogen-Ion Concentration, Muramidase, Protein Stability, Protein Transport, Proteolysis
Show Abstract · Added February 7, 2019
VacA is a secreted pore-forming toxin that induces cell vacuolation and contributes to the pathogenesis of gastric cancer and peptic ulcer disease. We observed that purified VacA has relatively little effect on the viability of AGS gastric epithelial cells, but the presence of exogenous weak bases such as ammonium chloride (NHCl) enhances the susceptibility of these cells to VacA-induced vacuolation and cell death. Therefore, we tested the hypothesis that NHCl augments VacA toxicity by altering the intracellular trafficking of VacA or inhibiting intracellular VacA degradation. We observed VacA colocalization with LAMP1- and LC3-positive vesicles in both the presence and absence of NHCl, indicating that NHCl does not alter VacA trafficking to lysosomes or autophagosomes. Conversely, we found that supplemental NHCl significantly increases the intracellular stability of VacA. By conducting experiments using chemical inhibitors, stable ATG5 knockdown cell lines, and ATG16L1 knockout cells (generated using CRISPR/Cas9), we show that VacA degradation is independent of autophagy and proteasome activity but dependent on lysosomal acidification. We conclude that weak bases like ammonia, potentially generated during infection by urease and other enzymes, enhance VacA toxicity by inhibiting toxin degradation.
Copyright © 2019 American Society for Microbiology.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Treating Nonalcoholic Fatty Liver Disease From the Outside In?
Flynn CR
(2019) Cell Mol Gastroenterol Hepatol 7: 682-683
MeSH Terms: Animals, Hepatocytes, Intracellular Signaling Peptides and Proteins, Mice, Non-alcoholic Fatty Liver Disease, Oligonucleotides, Antisense, Protein-Serine-Threonine Kinases
Added April 15, 2019
0 Communities
1 Members
0 Resources
7 MeSH Terms