Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 412

Publication Record

Connections

Treating Nonalcoholic Fatty Liver Disease From the Outside In?
Flynn CR
(2019) Cell Mol Gastroenterol Hepatol 7: 682-683
MeSH Terms: Animals, Hepatocytes, Intracellular Signaling Peptides and Proteins, Mice, Non-alcoholic Fatty Liver Disease, Oligonucleotides, Antisense, Protein-Serine-Threonine Kinases
Added April 15, 2019
0 Communities
1 Members
0 Resources
7 MeSH Terms
Unicellular ancestry and mechanisms of diversification of Goodpasture antigen-binding protein.
Darris C, Revert F, Revert-Ros F, Gozalbo-Rovira R, Feigley A, Fidler A, Lopez-Pascual E, Saus J, Hudson BG
(2019) J Biol Chem 294: 759-769
MeSH Terms: Basement Membrane, Evolution, Molecular, Humans, Isoenzymes, Protein-Serine-Threonine Kinases
Show Abstract · Added November 19, 2018
The emergence of the basement membrane (BM), a specialized form of extracellular matrix, was essential in the unicellular transition to multicellularity. However, the mechanism is unknown. Goodpasture antigen-binding protein (GPBP), a BM protein, was uniquely poised to play diverse roles in this transition owing to its multiple isoforms (GPBP-1, -2, and -3) with varied intracellular and extracellular functions (ceramide trafficker and protein kinase). We sought to determine the evolutionary origin of GPBP isoforms. Our findings reveal the presence of GPBP in unicellular protists, with GPBP-2 as the most ancient isoform. In vertebrates, GPBP-1 assumed extracellular function that is further enhanced by membrane-bound GPBP-3 in mammalians, whereas GPBP-2 retained intracellular function. Moreover, GPBP-2 possesses a dual intracellular/extracellular function in cnidarians, an early nonbilaterian group. We conclude that GPBP functioning both inside and outside the cell was of fundamental importance for the evolutionary transition to animal multicellularity and tissue evolution.
© 2019 Darris et al.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Excipients for the lyoprotection of MAPKAP kinase 2 inhibitory peptide nano-polyplexes.
Mukalel AJ, Evans BC, Kilchrist KV, Dailing EA, Burdette B, Cheung-Flynn J, Brophy CM, Duvall CL
(2018) J Control Release 282: 110-119
MeSH Terms: Cell Line, Drug Stability, Enzyme Inhibitors, Excipients, Freeze Drying, Humans, Intracellular Signaling Peptides and Proteins, Nanoparticles, Peptides, Protein-Serine-Threonine Kinases, Sucrose, Trehalose, Trisaccharides
Show Abstract · Added May 22, 2018
Herein, excipients are investigated to ameliorate the deleterious effects of lyophilization on peptide-polymer nano-polyplex (NP) morphology, cellular uptake, and bioactivity. The NPs are a previously-described platform technology for intracellular peptide delivery and are formulated from a cationic therapeutic peptide and the anionic, pH-responsive, endosomolytic polymer poly(propylacrylic acid) (PPAA). These NPs are effective when formulated and immediately used for delivery into cells and tissue, but they are not amenable to reconstitution following storage as a lyophilized powder due to aggregation. To develop a lyophilized NP format that facilitates longer-term storage and ease of use, MAPKAP kinase 2 inhibitory peptide-based NPs (MK2i-NPs) were prepared in the presence of a range of concentrations of the excipients sucrose, trehalose, and lactosucrose prior to lyophilization and storage. All excipients improved particle morphology post-lyophilization and significantly improved MK2i-NP uptake in human coronary artery smooth muscle cells relative to lyophilized NPs without excipient. In particular, MK2i-NPs lyophilized with 300 mM lactosucrose as an excipient demonstrated a 5.23 fold increase in cellular uptake (p < 0.001), a 2.52 fold increase in endosomal disruption (p < 0.05), and a 2.39 fold increase in ex vivo bioactivity (p < 0.01) compared to MK2i-NPs lyophilized without excipients. In sum, these data suggest that addition of excipients, particularly lactosucrose, maintains and even improves the uptake and therapeutic efficacy of peptide-polymer NPs post-lyophilization relative to freshly-made formulations. Thus, the use of excipients as lyoprotectants is a promising approach for the long-term storage of biotherapeutic NPs and poises this NP platform for clinical translation.
Copyright © 2018 Elsevier B.V. All rights reserved.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Mechanism of Hyperkalemia-Induced Metabolic Acidosis.
Harris AN, Grimm PR, Lee HW, Delpire E, Fang L, Verlander JW, Welling PA, Weiner ID
(2018) J Am Soc Nephrol 29: 1411-1425
MeSH Terms: Acidosis, Aldosterone, Amiloride, Ammonia, Animals, Cation Transport Proteins, Diuretics, Glutaminase, Hydrochlorothiazide, Hydrogen-Ion Concentration, Hyperkalemia, Kidney Tubules, Distal, Kidney Tubules, Proximal, Membrane Glycoproteins, Mice, Mice, Knockout, Protein-Serine-Threonine Kinases, Proton-Translocating ATPases, Urinalysis
Show Abstract · Added April 3, 2018
Hyperkalemia in association with metabolic acidosis that are out of proportion to changes in glomerular filtration rate defines type 4 renal tubular acidosis (RTA), the most common RTA observed, but the molecular mechanisms underlying the associated metabolic acidosis are incompletely understood. We sought to determine whether hyperkalemia directly causes metabolic acidosis and, if so, the mechanisms through which this occurs. We studied a genetic model of hyperkalemia that results from early distal convoluted tubule (DCT)-specific overexpression of constitutively active Ste20/SPS1-related proline-alanine-rich kinase (DCT-CA-SPAK). DCT-CA-SPAK mice developed hyperkalemia in association with metabolic acidosis and suppressed ammonia excretion; however, titratable acid excretion and urine pH were unchanged compared with those in wild-type mice. Abnormal ammonia excretion in DCT-CA-SPAK mice associated with decreased proximal tubule expression of the ammonia-generating enzymes phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase and overexpression of the ammonia-recycling enzyme glutamine synthetase. These mice also had decreased expression of the ammonia transporter family member Rhcg and decreased apical polarization of H-ATPase in the inner stripe of the outer medullary collecting duct. Correcting the hyperkalemia by treatment with hydrochlorothiazide corrected the metabolic acidosis, increased ammonia excretion, and normalized ammoniagenic enzyme and Rhcg expression in DCT-CA-SPAK mice. In wild-type mice, induction of hyperkalemia by administration of the epithelial sodium channel blocker benzamil caused hyperkalemia and suppressed ammonia excretion. Hyperkalemia decreases proximal tubule ammonia generation and collecting duct ammonia transport, leading to impaired ammonia excretion that causes metabolic acidosis.
Copyright © 2018 by the American Society of Nephrology.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development.
Moon KH, Kim HT, Lee D, Rao MB, Levine EM, Lim DS, Kim JW
(2018) Dev Cell 44: 13-28.e3
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Cell Lineage, Cell Polarity, Cells, Cultured, Cilia, Gene Expression Regulation, Developmental, Humans, Hyperplasia, Mice, Mice, Knockout, Neural Stem Cells, Neurofibromin 2, Organogenesis, Phenotype, Phosphoproteins, Protein-Serine-Threonine Kinases, Retinal Pigment Epithelium, Transcription Factors
Show Abstract · Added February 14, 2018
The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
19 MeSH Terms
DNPEP is not the only peptidase that produces SPAK fragments in kidney.
Koumangoye R, Delpire E
(2017) Physiol Rep 5:
MeSH Terms: Animals, CRISPR-Cas Systems, Female, Glutamyl Aminopeptidase, Kidney, Male, Mice, Mice, Knockout, Peptide Hydrolases, Protein-Serine-Threonine Kinases
Show Abstract · Added February 15, 2018
SPAK (STE20/SPS1-related proline/alanine-rich kinase) regulates Na and Cl reabsorption in the distal convoluted tubule, and possibly in the thick ascending limb of Henle. This kinase phosphorylates and activates the apical Na-Cl cotransporter in the DCT. Western blot analysis reveals that SPAK in kidney exists as a full-length protein as well as shorter fragments that might affect NKCC2 function in the TAL. Recently, we showed that kidney lysates exerts proteolytic activity towards SPAK, resulting in the formation of multiple SPAK fragments with possible inhibitory effects on the kinase. The proteolytic activity is mediated by a Zn metalloprotease inhibited by 1,10-phenanthroline, DTT, and EDTA. Size exclusion chromatography demonstrated that the protease was a high-molecular-weight protein. Protein identification by mass-spectrometry analysis after ion exchange and size exclusion chromatography identified multiple proteases as possible candidates and aspartyl aminopeptidase, DNPEP, shared all the properties of the kidney lysate activity. Furthermore, recombinant GST-DNPEP produced similar proteolytic pattern. No mouse knockout model was, however, available to be used as negative control. In this study, we used a DNPEP-mutant mouse generated by EUCOMM as well as a novel CRISPR/cas9 mouse knockout to assess the activity of their kidney lysates towards SPAK. Two mouse models had to be used because different anti-DNPEP antibodies provided conflicting data on whether the EUCOMM mouse resulted in a true knockout. We show that in the absence of DNPEP, the kidney lysates retain their ability to cleave SPAK, indicating that DNPEP might have been misidentified as the protease behind the kidney lysate activity, or that the aspartyl aminopeptidase might not be the only protease cleaving SPAK in kidney.
© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Lkb1 regulates granule cell migration and cortical folding of the cerebellar cortex.
Ryan KE, Kim PS, Fleming JT, Brignola E, Cheng FY, Litingtung Y, Chiang C
(2017) Dev Biol 432: 165-177
MeSH Terms: Animals, Cell Differentiation, Cell Division, Cell Movement, Cerebellar Cortex, Cytoplasmic Granules, Hedgehog Proteins, Mice, Nerve Tissue Proteins, Neurons, Organogenesis, Protein-Serine-Threonine Kinases, Signal Transduction
Show Abstract · Added April 10, 2019
Cerebellar growth and foliation require the Hedgehog-driven proliferation of granule cell precursors (GCPs) in the external granule layer (EGL). However, that increased or extended GCP proliferation generally does not elicit ectopic folds suggests that additional determinants control cortical expansion and foliation during cerebellar development. Here, we find that genetic loss of the serine-threonine kinase Liver Kinase B1 (Lkb1) in GCPs increased cerebellar cortical size and foliation independent of changes in proliferation or Hedgehog signaling. This finding is unexpected given that Lkb1 has previously shown to be critical for Hedgehog pathway activation in cultured cells. Consistent with unchanged proliferation rate of GCPs, the cortical expansion of Lkb1 mutants is accompanied by thinning of the EGL. The plane of cell division, which has been implicated in diverse processes from epithelial surface expansions to gyrification of the human cortex, remains unchanged in the mutants when compared to wild-type controls. However, we find that Lkb1 mutants display delayed radial migration of post-mitotic GCPs that coincides with increased cortical size, suggesting that aberrant cell migration may contribute to the cortical expansion and increase foliation. Taken together, our results reveal an important role for Lkb1 in regulating cerebellar cortical size and foliation in a Hedgehog-independent manner.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Blocking TGF- and -Catenin Epithelial Crosstalk Exacerbates CKD.
Nlandu-Khodo S, Neelisetty S, Phillips M, Manolopoulou M, Bhave G, May L, Clark PE, Yang H, Fogo AB, Harris RC, Taketo MM, Lee E, Gewin LS
(2017) J Am Soc Nephrol 28: 3490-3503
MeSH Terms: Animals, Aristolochic Acids, Cell Nucleus, Collagen, Crosses, Genetic, Epithelium, Female, Gene Deletion, Kidney Failure, Chronic, Kidney Tubules, Proximal, Male, Mice, Mice, Inbred BALB C, Mice, Knockout, Mice, Transgenic, Protein-Serine-Threonine Kinases, Receptor, Transforming Growth Factor-beta Type II, Receptors, Transforming Growth Factor beta, Signal Transduction, Transforming Growth Factor beta1, Wnt Proteins, beta Catenin
Show Abstract · Added July 18, 2017
The TGF- and Wnt/-catenin pathways have important roles in modulating CKD, but how these growth factors affect the epithelial response to CKD is not well studied. TGF- has strong profibrotic effects, but this pleiotropic factor has many different cellular effects depending on the target cell type. To investigate how TGF- signaling in the proximal tubule, a key target and mediator of CKD, alters the response to CKD, we injured mice lacking the TGF- type 2 receptor specifically in this epithelial segment. Compared with littermate controls, mice lacking the proximal tubular TGF- receptor had significantly increased tubular injury and tubulointerstitial fibrosis in two different models of CKD. RNA sequencing indicated that deleting the TGF- receptor in proximal tubule cells modulated many growth factor pathways, but Wnt/-catenin signaling was the pathway most affected. We validated that deleting the proximal tubular TGF- receptor impaired -catenin activity and Genetically restoring -catenin activity in proximal tubules lacking the TGF- receptor dramatically improved the tubular response to CKD in mice. Deleting the TGF- receptor alters many growth factors, and therefore, this ameliorated response may be a direct effect of -catenin activity or an indirect effect of -catenin interacting with other growth factors. In conclusion, blocking TGF- and -catenin crosstalk in proximal tubules exacerbates tubular injury in two models of CKD.
Copyright © 2017 by the American Society of Nephrology.
0 Communities
3 Members
0 Resources
22 MeSH Terms
Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus.
Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J, Vera A, DiLuna ML, Delpire E, Alper SL, Gunel M, Gerzanich V, Medzhitov R, Simard JM, Kahle KT
(2017) Nat Med 23: 997-1003
MeSH Terms: Acetazolamide, Animals, Antioxidants, Blotting, Western, Bumetanide, Cerebral Hemorrhage, Cerebral Ventricles, Cerebrospinal Fluid, Choroid Plexus, Diuretics, Gene Knockdown Techniques, Gene Knockout Techniques, Hydrocephalus, Immunoblotting, Immunohistochemistry, Immunoprecipitation, Inflammation, NF-kappa B, Proline, Protein-Serine-Threonine Kinases, Rats, Rats, Wistar, Salicylanilides, Solute Carrier Family 12, Member 2, Sulfonamides, Thiocarbamates, Toll-Like Receptor 4
Show Abstract · Added April 3, 2018
The choroid plexus epithelium (CPE) secretes higher volumes of fluid (cerebrospinal fluid, CSF) than any other epithelium and simultaneously functions as the blood-CSF barrier to gate immune cell entry into the central nervous system. Posthemorrhagic hydrocephalus (PHH), an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH), is a common disease usually treated by suboptimal CSF shunting techniques. PHH is classically attributed to primary impairments in CSF reabsorption, but little experimental evidence supports this concept. In contrast, the potential contribution of CSF secretion to PHH has received little attention. In a rat model of PHH, we demonstrate that IVH causes a Toll-like receptor 4 (TLR4)- and NF-κB-dependent inflammatory response in the CPE that is associated with a ∼3-fold increase in bumetanide-sensitive CSF secretion. IVH-induced hypersecretion of CSF is mediated by TLR4-dependent activation of the Ste20-type stress kinase SPAK, which binds, phosphorylates, and stimulates the NKCC1 co-transporter at the CPE apical membrane. Genetic depletion of TLR4 or SPAK normalizes hyperactive CSF secretion rates and reduces PHH symptoms, as does treatment with drugs that antagonize TLR4-NF-κB signaling or the SPAK-NKCC1 co-transporter complex. These data uncover a previously unrecognized contribution of CSF hypersecretion to the pathogenesis of PHH, demonstrate a new role for TLRs in regulation of the internal brain milieu, and identify a kinase-regulated mechanism of CSF secretion that could be targeted by repurposed US Food and Drug Administration (FDA)-approved drugs to treat hydrocephalus.
0 Communities
1 Members
0 Resources
MeSH Terms
Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport.
Zhang J, Karimy JK, Delpire E, Kahle KT
(2017) Expert Opin Ther Targets 21: 795-804
MeSH Terms: Animals, Colitis, Cystic Fibrosis, Drug Design, Epithelial Cells, Essential Hypertension, Humans, Hypertension, Ion Transport, Molecular Targeted Therapy, Protein-Serine-Threonine Kinases, Signal Transduction
Show Abstract · Added April 3, 2018
INTRODUCTION - The mammalian SPS1-related proline/alanine-rich serine-threonine kinase SPAK (STK39) modulates ion transport across and between epithelial cells in response to environmental stimuli such osmotic stress and inflammation. Research over the last decade has established a central role for SPAK in the regulation of ion and water transport in the distal nephron, colonic crypts, and pancreatic ducts, and has implicated deregulated SPAK signaling in NaCl-sensitive hypertension, ulcerative colitis and Crohn's disease, and cystic fibrosis. Areas covered: We review recent advances in our understanding of the role of SPAK kinase in the regulation of epithelial transport. We highlight how SPAK signaling - including its upstream Cl sensitive activators, the WNK kinases, and its downstream ion transport targets, the cation- Cl cotransporters contribute to human disease. We discuss prospects for the pharmacotherapeutic targeting of SPAK kinase in specific human disorders that feature impaired epithelial homeostasis. Expert opinion: The development of novel drugs that antagonize the SPAK-WNK interaction, inhibit SPAK kinase activity, or disrupt SPAK kinase activation by interfering with its binding to MO25α/β could be useful adjuncts in essential hypertension, inflammatory colitis, and cystic fibrosis.
0 Communities
1 Members
0 Resources
MeSH Terms