Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 241

Publication Record

Connections

Upregulated claudin-1 expression promotes colitis-associated cancer by promoting β-catenin phosphorylation and activation in Notch/p-AKT-dependent manner.
Gowrikumar S, Ahmad R, Uppada SB, Washington MK, Shi C, Singh AB, Dhawan P
(2019) Oncogene 38: 5321-5337
MeSH Terms: Animals, Biomarkers, Tumor, Cells, Cultured, Claudin-1, Colitis, Colonic Neoplasms, Gene Expression Regulation, Neoplastic, HT29 Cells, Humans, Inflammatory Bowel Diseases, Intestinal Mucosa, Mice, Mice, Inbred C57BL, Mice, Transgenic, Phosphorylation, Prognosis, Protein Processing, Post-Translational, Proto-Oncogene Proteins c-akt, Receptors, Notch, Signal Transduction, Up-Regulation, beta Catenin
Show Abstract · Added April 24, 2019
In IBD patients, integration between a hyper-activated immune system and epithelial cell plasticity underlies colon cancer development. However, molecular regulation of such a circuity remains undefined. Claudin-1 (Cld-1), a tight-junction integral protein deregulation alters colonic epithelial cell (CEC) differentiation, and promotes colitis severity while impairing colitis-associated injury/repair. Tumorigenesis is a product of an unregulated wound-healing process and therefore we postulated that upregulated Cld-1 levels render IBD patients susceptible to the colitis-associated cancer (CAC). Villin Cld-1 mice are used to carryout overexpressed studies in mice. The role of deregulated Cld-1 expression in CAC and the underlying mechanism was determined using a well-constructed study scheme and mouse models of DSS colitis/recovery and CAC. Using an inclusive investigative scheme, we here report that upregulated Cld-1 expression promotes susceptibility to the CAC and its malignancy. Increased mucosal inflammation and defective epithelial homeostasis accompanied the increased CAC in Villin-Cld-1-Tg mice. We further found significantly increased levels of protumorigenic M2 macrophages and β-cateninSer552 (β-CatSer552) expression in the CAC in Cld-1Tg vs. WT mice. Mechanistic studies identified the role of PI3K/Akt signaling in Cld-1-dependent activation of the β-CatSer552, which, in turn, was dependent on proinflammatory signals. Our studies identify a critical role of Cld-1 in promoting susceptibility to CAC. Importantly, these effects of deregulated Cld-1 were not associated with altered tight junction integrity, but on its noncanonical role in regulating Notch/PI3K/Wnt/ β-CatSer552 signaling. Overall, outcome from our current studies identifies Cld-1 as potential prognostic biomarker for IBD severity and CAC, and a novel therapeutic target.
1 Communities
0 Members
0 Resources
22 MeSH Terms
Simplified LC/MS assay for the measurement of isolevuglandin protein adducts in plasma and tissue samples.
Yermalitsky VN, Matafonova E, Tallman K, Li Z, Zackert W, Roberts LJ, Amarnath V, Davies SS
(2019) Anal Biochem 566: 89-101
MeSH Terms: Aldehydes, Animals, Chromatography, Liquid, Ketones, Lipids, Mice, Mice, Inbred C57BL, Protein Processing, Post-Translational, Proteins, Tandem Mass Spectrometry
Show Abstract · Added July 17, 2019
Isolevuglandins (IsoLGs) are a family of highly reactive 4-ketoaldehydes formed by lipid peroxidation that modify the lysyl residues of cellular proteins. Modification of proteins by IsoLGs have been shown to contribute to disease processes such as the development of hypertension. Accurate quantitation of the extent of protein modification by IsoLGs is essential for understanding the mechanisms whereby these modifications contribute to disease and the efficacy of interventions designed to prevent this modification. The previously described LC/MS assay to quantitate IsoLG protein adducts was extremely labor-intensive and time consuming, and while it offered reasonably low intra-day variation for replicate samples, variation when replicate samples were processed on separate days was significant. These limitations significantly restricted utilization of this approach. We therefore performed a series of studies to optimize the assay. We now report a significantly simplified LC/MS assay for measurement of IsoLG protein adducts with increased sensitivity and lower intra-day and inter-day variability.
Copyright © 2018. Published by Elsevier Inc.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks.
Galligan JJ, Wepy JA, Streeter MD, Kingsley PJ, Mitchener MM, Wauchope OR, Beavers WN, Rose KL, Wang T, Spiegel DA, Marnett LJ
(2018) Proc Natl Acad Sci U S A 115: 9228-9233
MeSH Terms: Arginine, HEK293 Cells, Histones, Humans, Lactoylglutathione Lyase, Protein Processing, Post-Translational, Pyruvaldehyde, Transcription, Genetic
Show Abstract · Added April 12, 2019
Histone posttranslational modifications (PTMs) regulate chromatin dynamics, DNA accessibility, and transcription to expand the genetic code. Many of these PTMs are produced through cellular metabolism to offer both feedback and feedforward regulation. Herein we describe the existence of Lys and Arg modifications on histones by a glycolytic by-product, methylglyoxal (MGO). Our data demonstrate that adduction of histones by MGO is an abundant modification, present at the same order of magnitude as Arg methylation. These modifications were detected on all four core histones at critical residues involved in both nucleosome stability and reader domain binding. In addition, MGO treatment of cells lacking the major detoxifying enzyme, glyoxalase 1, results in marked disruption of H2B acetylation and ubiquitylation without affecting H2A, H3, and H4 modifications. Using RNA sequencing, we show that MGO is capable of altering gene transcription, most notably in cells lacking GLO1. Finally, we show that the deglycase DJ-1 protects histones from adduction by MGO. Collectively, our findings demonstrate the existence of a previously undetected histone modification derived from glycolysis, which may have far-reaching implications for the control of gene expression and protein transcription linked to metabolism.
Copyright © 2018 the Author(s). Published by PNAS.
0 Communities
1 Members
0 Resources
MeSH Terms
Quantification of thioether-linked glutathione modifications in human lens proteins.
Wang Z, Schey KL
(2018) Exp Eye Res 175: 83-89
MeSH Terms: Adolescent, Alanine, Aminobutyrates, Cataract, Cellular Senescence, Chromatography, Liquid, Crystallins, Cysteine, Glutathione, Humans, Lens, Crystalline, Middle Aged, Protein Processing, Post-Translational, Serine, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Sulfides, Threonine, Tissue Donors, Young Adult
Show Abstract · Added April 4, 2019
Dehydroalanine (DHA) and dehydrobutyrine (DHB) intermediates, formed through β-elimination, induce protein irreversible glutathionylation and protein-protein crosslinking in human lens fiber cells. In total, irreversible glutathionylation was detected on 52 sites including cysteine, serine and threonine residues in 18 proteins in human lenses. In this study, the levels of GSH modification on three serine residues and four cysteine residues located in seven different lens proteins isolated from different regions and different aged lenses were quantified. The relative levels of modification (modified/nonmodified) were site-specific and age-related, ranging from less than 0.05% to about 500%. The levels of modification on all of the sites quantified in the lens cortex increased with age and GSH modification also increased from cortex to outer nucleus region suggesting an age-related increase of modification. The levels of modification on sites located in stable regions of the proteins such as Cys117 of βA3, Cys80 of βB1 and Cys27 of γS, continued increasing in inner nucleus, but modification on sites located in regions undergoing degradation with age decreased in the inner nucleus suggesting GSH modified proteins were more susceptible to further modification. Irreversible GSH modification in cataract lenses was typically higher than in age-matched normal lenses, but the difference did not reach statistical significance for a majority of sites, with the exception Cys117 of βA3 crystallin in WSF. Except for S59 of αA and αB crystallins, GSH modification did not induce protein insolubility suggesting a possible role for this modification in protection from protein-protein crosslinking.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
The Role of Matrix Composition in the Mechanical Behavior of Bone.
Unal M, Creecy A, Nyman JS
(2018) Curr Osteoporos Rep 16: 205-215
MeSH Terms: Biomechanical Phenomena, Bone Density, Bone Matrix, Bone and Bones, Cancellous Bone, Collagen Type I, Fractures, Bone, Glycation End Products, Advanced, Humans, Minerals, Protein Processing, Post-Translational, Tropocollagen, Water
Show Abstract · Added April 9, 2018
PURPOSE OF REVIEW - While thinning of the cortices or trabeculae weakens bone, age-related changes in matrix composition also lower fracture resistance. This review summarizes how the organic matrix, mineral phase, and water compartments influence the mechanical behavior of bone, thereby identifying characteristics important to fracture risk.
RECENT FINDINGS - In the synthesis of the organic matrix, tropocollagen experiences various post-translational modifications that facilitate a highly organized fibril of collagen I with a preferred orientation giving bone extensibility and several toughening mechanisms. Being a ceramic, mineral is brittle but increases the strength of bone as its content within the organic matrix increases. With time, hydroxyapatite-like crystals experience carbonate substitutions, the consequence of which remains to be understood. Water participates in hydrogen bonding with organic matrix and in electrostatic attractions with mineral phase, thereby providing stability to collagen-mineral interface and ductility to bone. Clinical tools sensitive to age- and disease-related changes in matrix composition that the affect mechanical behavior of bone could potentially improve fracture risk assessment.
1 Communities
1 Members
0 Resources
13 MeSH Terms
A Shared Pattern of β-Catenin Activation in Bronchopulmonary Dysplasia and Idiopathic Pulmonary Fibrosis.
Sucre JMS, Deutsch GH, Jetter CS, Ambalavanan N, Benjamin JT, Gleaves LA, Millis BA, Young LR, Blackwell TS, Kropski JA, Guttentag SH
(2018) Am J Pathol 188: 853-862
MeSH Terms: A549 Cells, Adult, Animals, Animals, Newborn, Axin Protein, Bronchopulmonary Dysplasia, Cell Nucleus, Epithelial Cells, Female, Fetus, Humans, Idiopathic Pulmonary Fibrosis, Lung, Mice, Inbred C57BL, Phosphorylation, Pregnancy, Pregnancy Trimester, Second, Protein Processing, Post-Translational, Signal Transduction, Tyrosine, beta Catenin
Show Abstract · Added March 21, 2018
Wnt/β-catenin signaling is necessary for normal lung development, and abnormal Wnt signaling contributes to the pathogenesis of both bronchopulmonary dysplasia (BPD) and idiopathic pulmonary fibrosis (IPF), fibrotic lung diseases that occur during infancy and aging, respectively. Using a library of human normal and diseased human lung samples, we identified a distinct signature of nuclear accumulation of β-catenin phosphorylated at tyrosine 489 and epithelial cell cytosolic localization of β-catenin phosphorylated at tyrosine 654 in early normal lung development and fibrotic lung diseases BPD and IPF. Furthermore, this signature was recapitulated in murine models of BPD and IPF. Image analysis of immunofluorescence colocalization demonstrated a consistent pattern of elevated nuclear phosphorylated β-catenin in the lung epithelium and surrounding mesenchyme in BPD and IPF, closely resembling the pattern observed in 18-week fetal lung. Nuclear β-catenin phosphorylated at tyrosine 489 associated with an increased expression of Wnt target gene AXIN2, suggesting that the observed β-catenin signature is of functional significance during normal development and injury repair. The association of specific modifications of β-catenin during normal lung development and again in response to lung injury supports the widely held concept that repair of lung injury involves the recapitulation of developmental programs. Furthermore, these observations suggest that β-catenin phosphorylation has potential as a therapeutic target for the treatment and prevention of both BPD and IPF.
Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
21 MeSH Terms
DehydroalanylGly, a new post translational modification resulting from the breakdown of glutathione.
Friedrich MG, Wang Z, Schey KL, Truscott RJW
(2018) Biochim Biophys Acta Gen Subj 1862: 907-913
MeSH Terms: Alanine, Amino Acid Sequence, Crystallins, Dipeptides, Glutathione, Glutathione Disulfide, Humans, Lens, Crystalline, Lysine, Middle Aged, Molecular Structure, Peptides, Protein Conformation, Protein Processing, Post-Translational, Proteins, Tandem Mass Spectrometry, Young Adult
Show Abstract · Added April 3, 2018
BACKGROUND - The human body contains numerous long-lived proteins which deteriorate with age, typically by racemisation, deamidation, crosslinking and truncation. Previously we elucidated one reaction responsible for age-related crosslinking, the spontaneous formation of dehydroalanine (DHA) intermediates from phosphoserine and cysteine. This resulted in non-disulphide covalent crosslinks. The current paper outlines a novel posttranslational modification (PTM) in human proteins, which involves the addition of dehydroalanylglycine (DHAGly) to Lys residues.
METHODS - Human lens digests were examined by mass spectrometry for the presence of (DHA)Gly (+144.0535 Da) adducts to Lys residues. Peptide model studies were undertaken to elucidate the mechanism of formation.
RESULTS - In the lens, this PTM was detected at 18 lysine sites in 7 proteins. Using model peptides, a pathway for its formation was found to involve initial formation of the glutathione degradation product, γ-Glu(DHA)Gly from oxidised glutathione (GSSG). Once the Lys adduct formed, the Glu residue was lost in a hydrolytic mechanism apparently catalysed by the ε-amino group of the Lys.
CONCLUSIONS - This discovery suggests that within cells, the functional groups of amino acids in proteins may be susceptible to modification by reactive metabolites derived from GSSG.
GENERAL SIGNIFICANCE - Our finding demonstrates a novel +144.0535 Da PTM arising from the breakdown of oxidised glutathione.
Copyright © 2018. Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity.
Dronamraju R, Jha DK, Eser U, Adams AT, Dominguez D, Choudhury R, Chiang YC, Rathmell WK, Emanuele MJ, Churchman LS, Strahl BD
(2018) Nucleic Acids Res 46: 1331-1344
MeSH Terms: Anaphase-Promoting Complex-Cyclosome, Biological Evolution, Cdc20 Proteins, Cell Cycle, Gene Expression Regulation, Fungal, Histone-Lysine N-Methyltransferase, Histones, Humans, Lysine, Methylation, Methyltransferases, Nocodazole, Protein Processing, Post-Translational, Proteolysis, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Transcription, Genetic, Tubulin Modulators
Show Abstract · Added October 30, 2019
Methylation of histone H3 lysine 36 (H3K36me) by yeast Set2 is critical for the maintenance of chromatin structure and transcriptional fidelity. However, we do not know the full range of Set2/H3K36me functions or the scope of mechanisms that regulate Set2-dependent H3K36 methylation. Here, we show that the APC/CCDC20 complex regulates Set2 protein abundance during the cell cycle. Significantly, absence of Set2-mediated H3K36me causes a loss of cell cycle control and pronounced defects in the transcriptional fidelity of cell cycle regulatory genes, a class of genes that are generally long, hence highly dependent on Set2/H3K36me for their transcriptional fidelity. Because APC/C also controls human SETD2, and SETD2 likewise regulates cell cycle progression, our data imply an evolutionarily conserved cell cycle function for Set2/SETD2 that may explain why recurrent mutations of SETD2 contribute to human disease.
0 Communities
1 Members
0 Resources
MeSH Terms
Development of Erasin: a chromone-based STAT3 inhibitor which induces apoptosis in Erlotinib-resistant lung cancer cells.
Lis C, Rubner S, Roatsch M, Berg A, Gilcrest T, Fu D, Nguyen E, Schmidt AM, Krautscheid H, Meiler J, Berg T
(2017) Sci Rep 7: 17390
MeSH Terms: Antineoplastic Agents, Apoptosis, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, Chromones, Humans, Lung Neoplasms, Molecular Docking Simulation, Phosphorylation, Protein Processing, Post-Translational, STAT1 Transcription Factor, STAT3 Transcription Factor, STAT5 Transcription Factor, Structure-Activity Relationship, Tumor Suppressor Proteins, src Homology Domains
Show Abstract · Added March 17, 2018
Inhibition of protein-protein interactions by small molecules offers tremendous opportunities for basic research and drug development. One of the fundamental challenges of this research field is the broad lack of available lead structures from nature. Here, we demonstrate that modifications of a chromone-based inhibitor of the Src homology 2 (SH2) domain of the transcription factor STAT5 confer inhibitory activity against STAT3. The binding mode of the most potent STAT3 inhibitor Erasin was analyzed by the investigation of structure-activity relationships, which was facilitated by chemical synthesis and biochemical activity analysis, in combination with molecular docking studies. Erasin inhibits tyrosine phosphorylation of STAT3 with selectivity over STAT5 and STAT1 in cell-based assays, and increases the apoptotic rate of cultured NSCLC cells in a STAT3-dependent manner. This ability of Erasin also extends to HCC-827 cells with acquired resistance against Erlotinib, a clinically used inhibitor of the EGF receptor. Our work validates chromone-based acylhydrazones as privileged structures for antagonizing STAT SH2 domains, and demonstrates that apoptosis can be induced in NSCLC cells with acquired Erlotinib resistance by direct inhibition of STAT3.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway.
Cox NJ, Unlu G, Bisnett BJ, Meister TR, Condon BM, Luo PM, Smith TJ, Hanna M, Chhetri A, Soderblom EJ, Audhya A, Knapik EW, Boyce M
(2018) Biochemistry 57: 91-107
MeSH Terms: Acetylglucosamine, Acylation, Animals, COP-Coated Vesicles, Cell Line, Collagen, Craniofacial Abnormalities, Disease Models, Animal, Glycosylation, Humans, Organelles, Protein Conformation, Protein Processing, Post-Translational, Protein Transport, Vertebrates, Vesicular Transport Proteins, Zebrafish
Show Abstract · Added March 15, 2018
The COPII coat complex, which mediates secretory cargo trafficking from the endoplasmic reticulum, is a key control point for subcellular protein targeting. Because misdirected proteins cannot function, protein sorting by COPII is critical for establishing and maintaining normal cell and tissue homeostasis. Indeed, mutations in COPII genes cause a range of human pathologies, including cranio-lenticulo-sutural dysplasia (CLSD), which is characterized by collagen trafficking defects, craniofacial abnormalities, and skeletal dysmorphology. Detailed knowledge of the COPII pathway is required to understand its role in normal cell physiology and to devise new treatments for disorders in which it is disrupted. However, little is known about how vertebrates dynamically regulate COPII activity in response to developmental, metabolic, or pathological cues. Several COPII proteins are modified by O-linked β-N-acetylglucosamine (O-GlcNAc), a dynamic form of intracellular protein glycosylation, but the biochemical and functional effects of these modifications remain unclear. Here, we use a combination of chemical, biochemical, cellular, and genetic approaches to demonstrate that site-specific O-GlcNAcylation of COPII proteins mediates their protein-protein interactions and modulates cargo secretion. In particular, we show that individual O-GlcNAcylation sites of SEC23A, an essential COPII component, are required for its function in human cells and vertebrate development, because mutation of these sites impairs SEC23A-dependent in vivo collagen trafficking and skeletogenesis in a zebrafish model of CLSD. Our results indicate that O-GlcNAc is a conserved and critical regulatory modification in the vertebrate COPII-dependent trafficking pathway.
0 Communities
1 Members
0 Resources
17 MeSH Terms