Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 20

Publication Record

Connections

Carcinogenic Strains Selectively Dysregulate the Gastric Proteome, Which May Be Associated with Stomach Cancer Progression.
Noto JM, Rose KL, Hachey AJ, Delgado AG, Romero-Gallo J, Wroblewski LE, Schneider BG, Shah SC, Cover TL, Wilson KT, Israel DA, Roa JC, Schey KL, Zavros Y, Piazuelo MB, Peek RM
(2019) Mol Cell Proteomics 18: 352-371
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Carrier Proteins, Cell Line, Disease Models, Animal, Gene Expression Regulation, Neoplastic, Gerbillinae, Helicobacter Infections, Helicobacter pylori, Humans, Intestinal Mucosa, Male, Protein Interaction Maps, Proteomics, RNA-Binding Proteins, Stomach Neoplasms, Up-Regulation, Vesicular Transport Proteins
Show Abstract · Added December 16, 2018
is the strongest risk factor for gastric cancer. Initial interactions between and its host originate at the microbial-gastric epithelial cell interface, and contact between and gastric epithelium activates signaling pathways that drive oncogenesis. One microbial constituent that increases gastric cancer risk is the pathogenicity island, which encodes a type IV secretion system that translocates the effector protein, CagA, into host cells. We previously demonstrated that infection of Mongolian gerbils with a carcinogenic strain, 7.13, recapitulates many features of -induced gastric cancer in humans. Therefore, we sought to define gastric proteomic changes induced by that are critical for initiation of the gastric carcinogenic cascade. Gastric cell scrapings were harvested from -infected and uninfected gerbils for quantitative proteomic analyses using isobaric tags for relative and absolute quantitation (iTRAQ). Quantitative proteomic analysis of samples from two biological replicate experiments quantified a total of 2764 proteins, 166 of which were significantly altered in abundance by infection. Pathway mapping identified significantly altered inflammatory and cancer-signaling pathways that included Rab/Ras signaling proteins. Consistent with the iTRAQ results, RABEP2 and G3BP2 were significantly up-regulated , in primary human gastric monolayers, and in gerbil gastric epithelium following infection with strain 7.13 in a -dependent manner. Within human stomachs, RABEP2 and G3BP2 expression in gastric epithelium increased in parallel with the severity of premalignant and malignant lesions and was significantly elevated in intestinal metaplasia and dysplasia, as well as gastric adenocarcinoma, compared with gastritis alone. These results indicate that carcinogenic strains of induce dramatic and specific changes within the gastric proteome and that a subset of altered proteins within pathways with oncogenic potential may facilitate the progression of gastric carcinogenesis in humans.
© 2019 Noto et al.
0 Communities
5 Members
0 Resources
18 MeSH Terms
Proteomics show antigen presentation processes in human immune cells after AS03-H5N1 vaccination.
Galassie AC, Goll JB, Samir P, Jensen TL, Hoek KL, Howard LM, Allos TM, Niu X, Gordy LE, Creech CB, Hill H, Joyce S, Edwards KM, Link AJ
(2017) Proteomics 17:
MeSH Terms: Adjuvants, Immunologic, Antigen Presentation, B-Lymphocytes, Cells, Cultured, Humans, Influenza A Virus, H5N1 Subtype, Influenza Vaccines, Influenza, Human, Killer Cells, Natural, Monocytes, Neutrophils, Protein Interaction Maps, Proteome, Proteomics, T-Lymphocytes
Show Abstract · Added August 15, 2017
Adjuvants enhance immunity elicited by vaccines through mechanisms that are poorly understood. Using a systems biology approach, we investigated temporal protein expression changes in five primary human immune cell populations: neutrophils, monocytes, natural killer cells, T cells, and B cells after administration of either an Adjuvant System 03 adjuvanted or unadjuvanted split-virus H5N1 influenza vaccine. Monocytes demonstrated the strongest differential signal between vaccine groups. On day 3 post-vaccination, several antigen presentation-related pathways, including MHC class I-mediated antigen processing and presentation, were enriched in monocytes and neutrophils and expression of HLA class I proteins was increased in the Adjuvant System 03 group. We identified several protein families whose proteomic responses predicted seroprotective antibody responses (>1:40 hemagglutination inhibition titer), including inflammation and oxidative stress proteins at day 1 as well as immunoproteasome subunit (PSME1 and PSME2) and HLA class I proteins at day 3 in monocytes. While comparison between temporal proteomic and transcriptomic results showed little overlap overall, enrichment of the MHC class I antigen processing and presentation pathway in monocytes and neutrophils was confirmed by both approaches.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1 Communities
0 Members
0 Resources
15 MeSH Terms
Long intergenic non-coding RNA expression signature in human breast cancer.
Zhang Y, Wagner EK, Guo X, May I, Cai Q, Zheng W, He C, Long J
(2016) Sci Rep 6: 37821
MeSH Terms: Adult, Aged, Breast Neoplasms, Case-Control Studies, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, MCF-7 Cells, Middle Aged, Protein Interaction Maps, RNA, Long Noncoding, Sequence Analysis, RNA, Survival Analysis, Transcription Factors
Show Abstract · Added April 3, 2018
Breast cancer is a complex disease, characterized by gene deregulation. There is less systematic investigation of the capacity of long intergenic non-coding RNAs (lincRNAs) as biomarkers associated with breast cancer pathogenesis or several clinicopathological variables including receptor status and patient survival. We designed a two-stage study, including 1,000 breast tumor RNA-seq data from The Cancer Genome Atlas (TCGA) as the discovery stage, and RNA-seq data of matched tumor and adjacent normal tissue from 50 breast cancer patients as well as 23 normal breast tissue from healthy women as the replication stage. We identified 83 lincRNAs showing the significant expression changes in breast tumors with a false discovery rate (FDR) < 1% in the discovery dataset. Thirty-seven out of the 83 were validated in the replication dataset. Integrative genomic analyses suggested that the aberrant expression of these 37 lincRNAs was probably related with the expression alteration of several transcription factors (TFs). We observed a differential co-expression pattern between lincRNAs and their neighboring genes. We found that the expression levels of one lincRNA (RP5-1198O20 with Ensembl ID ENSG00000230615) were associated with breast cancer survival with P < 0.05. Our study identifies a set of aberrantly expressed lincRNAs in breast cancer.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Changes in the Adult GluN2B Associated Proteome following Adolescent Intermittent Ethanol Exposure.
Swartzwelder HS, Risher ML, Miller KM, Colbran RJ, Winder DG, Wills TA
(2016) PLoS One 11: e0155951
MeSH Terms: Adolescent, Animals, Disease Models, Animal, Ethanol, Female, Hippocampus, Humans, Male, Protein Interaction Maps, Proteome, Proteomics, Rats, Sprague-Dawley, Receptors, N-Methyl-D-Aspartate, Signal Transduction, Underage Drinking
Show Abstract · Added April 26, 2017
Adolescent alcohol use is the strongest predictor for alcohol use disorders. In rodents, adolescents have distinct responses to acute ethanol, and prolonged alcohol exposure during adolescence can maintain these phenotypes into adulthood. One brain region that is particularly sensitive to the effects of both acute and chronic ethanol exposure is the hippocampus. Adolescent intermittent ethanol exposure (AIE) produces long lasting changes in hippocampal synaptic plasticity and dendritic morphology, as well as in the susceptibility to acute ethanol-induced spatial memory impairment. Given the pattern of changes in hippocampal structure and function, one potential target for these effects is the ethanol sensitive GluN2B subunit of the NMDA receptor, which is known to be involved in synaptic plasticity and dendritic morphology. Thus we sought to determine if there were persistent changes in hippocampal GluN2B signaling cascades following AIE. We employed a previously validated GluN2B-targeted proteomic strategy that was used to identify novel signaling mechanisms altered by chronic ethanol exposure in the adult hippocampus. We collected adult hippocampal tissue (P70) from rats that had been given 2 weeks of AIE from P30-45. Tissue extracts were fractionated into synaptic and non-synaptic pools, immuno-precipitated for GluN2B, and then analyzed using proteomic methods. We detected a large number of proteins associated with GluN2B. AIE produced significant changes in the association of many proteins with GluN2B in both synaptic and non-synaptic fractions. Intriguingly the number of proteins changed in the non-synaptic fraction was double that found in the synaptic fraction. Some of these proteins include those involved in glutamate signaling cytoskeleton rearrangement, calcium signaling, and plasticity. Disruptions in these pathways may contribute to the persistent cellular and behavioral changes found in the adult hippocampus following AIE. Further, the robust change in non-synaptic proteins suggests that AIE may prime this signaling pathway for future ethanol exposures in adulthood.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress.
Federspiel JD, Codreanu SG, Palubinsky AM, Winland AJ, Betanzos CM, McLaughlin B, Liebler DC
(2016) Mol Cell Proteomics 15: 1947-61
MeSH Terms: 14-3-3 Proteins, Aldehydes, Epitopes, HEK293 Cells, Humans, Isotope Labeling, MAP Kinase Kinase Kinase 5, MAP Kinase Kinase Kinases, Mass Spectrometry, Protein Interaction Maps, Proteomics, Signal Transduction
Show Abstract · Added April 25, 2016
Apoptosis signal-regulating kinase 1 (ASK1) is a key sensor kinase in the mitogen-activated protein kinase pathway that transduces cellular responses to oxidants and electrophiles. ASK1 is regulated by a large, dynamic multiprotein signalosome complex, potentially including over 90 reported ASK1-interacting proteins. We employed both shotgun and targeted mass spectrometry assays to catalogue the ASK1 protein-protein interactions in HEK-293 cells treated with the prototypical lipid electrophile 4-hydroxy-2-nonenal (HNE). Using both epitope-tagged overexpression and endogenous expression cell systems, we verified most of the previously reported ASK1 protein-protein interactions and identified 14 proteins that exhibited dynamic shifts in association with ASK1 in response to HNE stress. We used precise stable isotope dilution assays to quantify protein stoichiometry in the ASK signalosome complex and identified ASK2 at a 1:1 stoichiometric ratio with ASK1 and 14-3-3 proteins (YWHAQ, YWHAB, YWHAH, and YWHAE) collectively at a 0.5:1 ratio with ASK1 as the main components. Several other proteins, including ASK3, PARK7, PRDX1, and USP9X were detected with stoichiometries of 0.1:1 or less. These data support an ASK signalosome comprising a multimeric core complex of ASK1, ASK2, and 14-3-3 proteins, which dynamically engages other binding partners needed to mediate diverse stress-response signaling events. This study further demonstrates the value of combining global and targeted MS approaches to interrogate multiprotein complex composition and dynamics.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
1 Communities
1 Members
0 Resources
12 MeSH Terms
A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways.
Hu J, Stern M, Gimenez LE, Wanka L, Zhu L, Rossi M, Meister J, Inoue A, Beck-Sickinger AG, Gurevich VV, Wess J
(2016) J Biol Chem 291: 7809-20
MeSH Terms: Animals, Arrestins, COS Cells, Calcium, Cells, Cultured, Chlorocebus aethiops, GTP-Binding Protein alpha Subunits, Gq-G11, Gene Knockdown Techniques, Glucose, HEK293 Cells, Hepatocytes, Humans, Mice, Inbred C57BL, Protein Interaction Mapping, Protein Interaction Maps, Receptors, G-Protein-Coupled, Signal Transduction, beta-Arrestins
Show Abstract · Added February 15, 2016
Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger β-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusβ-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and β-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with β-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusβ-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of β-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
18 MeSH Terms
LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding.
Layer JH, Alford CE, McDonald WH, Davé UP
(2016) Mol Cell Biol 36: 488-506
MeSH Terms: Adaptor Proteins, Signal Transducing, Amino Acid Sequence, Amino Acid Substitution, Cell Line, DNA-Binding Proteins, Humans, Jurkat Cells, LIM Domain Proteins, Leukemia, T-Cell, Molecular Sequence Data, Mutation, Protein Interaction Domains and Motifs, Protein Interaction Maps, Protein Stability, Proto-Oncogene Proteins, Transcription Factors, Transcriptional Activation
Show Abstract · Added January 26, 2016
LMO2 is a component of multisubunit DNA-binding transcription factor complexes that regulate gene expression in hematopoietic stem and progenitor cell development. Enforced expression of LMO2 causes leukemia by inducing hematopoietic stem cell-like features in T-cell progenitor cells, but the biochemical mechanisms of LMO2 function have not been fully elucidated. In this study, we systematically dissected the LMO2/LDB1-binding interface to investigate the role of this interaction in T-cell leukemia. Alanine scanning mutagenesis of the LIM interaction domain of LDB1 revealed a discrete motif, R(320)LITR, required for LMO2 binding. Most strikingly, coexpression of full-length, wild-type LDB1 increased LMO2 steady-state abundance, whereas coexpression of mutant proteins deficient in LMO2 binding compromised LMO2 stability. These mutant LDB1 proteins also exerted dominant negative effects on growth and transcription in diverse leukemic cell lines. Mass spectrometric analysis of LDB1 binding partners in leukemic lines supports the notion that LMO2/LDB1 function in leukemia occurs in the context of multisubunit complexes, which also protect the LMO2 oncoprotein from degradation. Collectively, these data suggest that the assembly of LMO2 into complexes, via direct LDB1 interaction, is a potential molecular target that could be exploited in LMO2-driven leukemias resistant to existing chemotherapy regimens.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Histology-directed and imaging mass spectrometry: An emerging technology in ectopic calcification.
Taverna D, Boraldi F, De Santis G, Caprioli RM, Quaglino D
(2015) Bone 74: 83-94
MeSH Terms: Adolescent, Calcification, Physiologic, Calcinosis, Diagnostic Imaging, Female, Gene Ontology, Humans, Middle Aged, Phenotype, Principal Component Analysis, Protein Interaction Maps, Proteins, Pseudoxanthoma Elasticum, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added February 12, 2015
The present study was designed to demonstrate the potential of an optimized histology directed protein identification combined with imaging mass spectrometry technology to reveal and identify molecules associated to ectopic calcification in human tissue. As a proof of concept, mineralized and non-mineralized areas were compared within the same dermal tissue obtained from a patient affected by Pseudoxanthoma elasticum, a genetic disorder characterized by calcification only at specific sites of soft connective tissues. Data have been technically validated on a contralateral dermal tissue from the same subject and compared with those from control healthy skin. Results demonstrate that this approach 1) significantly reduces the effects generated by techniques that, disrupting tissue organization, blend data from affected and unaffected areas; 2) demonstrates that, abolishing differences due to inter-individual variability, mineralized and non-mineralized areas within the same sample have a specific protein profile and have a different distribution of molecules; and 3) avoiding the bias of focusing on already known molecules, reveals a number of proteins that have been never related to the disease nor to the calcification process, thus paving the way for the selection of new molecules to be validated as pathogenic or as potential pharmacological targets.
Copyright © 2015. Published by Elsevier Inc.
1 Communities
1 Members
0 Resources
14 MeSH Terms
Supramolecular organization of the α121-α565 collagen IV network.
Robertson WE, Rose KL, Hudson BG, Vanacore RM
(2014) J Biol Chem 289: 25601-10
MeSH Terms: Amino Acid Sequence, Animals, Aorta, Basement Membrane, Cattle, Collagen Type IV, Lysine, Mass Spectrometry, Methionine, Protein Conformation, Protein Interaction Maps, Protein Multimerization, Protein Structure, Tertiary, Protein Subunits
Show Abstract · Added October 27, 2014
Collagen IV is a family of 6 chains (α1-α6), that form triple-helical protomers that assemble into supramolecular networks. Two distinct networks with chain compositions of α121 and α345 have been established. These oligomerize into separate α121 and α345 networks by a homotypic interaction through their trimeric noncollagenous (NC1) domains, forming α121 and α345 NC1 hexamers, respectively. These are stabilized by novel sulfilimine (-S=N-) cross-links, a covalent cross-link that forms between Met(93) and Hyl(211) at the trimer-trimer interface. A third network with a composition of α1256 has been proposed, but its supramolecular organization has not been established. In this study we investigated the supramolecular organization of this network by determining the chain identity of sulfilimine-cross-linked NC1 domains derived from the α1256 NC1 hexamer. High resolution mass spectrometry analyses of peptides revealed that sulfilimine bonds specifically cross-link α1 to α5 and α2 to α6 NC1 domains, thus providing the spatial orientation between interacting α121 and α565 trimers. Using this information, we constructed a three-dimensional homology model in which the α565 trimer shows a good chemical and structural complementarity to the α121 trimer. Our studies provide the first chemical evidence for an α565 protomer and its heterotypic interaction with the α121 protomer. Moreover, our findings, in conjunction with our previous studies, establish that the six collagen IV chains are organized into three canonical protomers α121, α345, and α565 forming three distinct networks: α121, α345, and α121-α565, each of which is stabilized by sulfilimine bonds between their C-terminal NC1 domains.
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
1 Communities
2 Members
1 Resources
14 MeSH Terms
Glomerular cell cross-talk influences composition and assembly of extracellular matrix.
Byron A, Randles MJ, Humphries JD, Mironov A, Hamidi H, Harris S, Mathieson PW, Saleem MA, Satchell SC, Zent R, Humphries MJ, Lennon R
(2014) J Am Soc Nephrol 25: 953-66
MeSH Terms: Cells, Cultured, Coculture Techniques, Culture Media, Conditioned, Extracellular Matrix, Extracellular Matrix Proteins, Humans, Kidney Glomerulus, Phenotype, Podocytes, Protein Interaction Maps, Receptor Cross-Talk
Show Abstract · Added February 25, 2014
The glomerular basement membrane (GBM) is a specialized extracellular matrix (ECM) compartment within the glomerulus that contains tissue-restricted isoforms of collagen IV and laminin. It is integral to the capillary wall and therefore, functionally linked to glomerular filtration. Although the composition of the GBM has been investigated with global and candidate-based approaches, the relative contributions of glomerular cell types to the production of ECM are not well understood. To characterize specific cellular contributions to the GBM, we used mass spectrometry-based proteomics to analyze ECM isolated from podocytes and glomerular endothelial cells in vitro. These analyses identified cell type-specific differences in ECM composition, indicating distinct contributions to glomerular ECM assembly. Coculture of podocytes and endothelial cells resulted in an altered composition and organization of ECM compared with monoculture ECMs, and electron microscopy revealed basement membrane-like ECM deposition between cocultured cells, suggesting the involvement of cell-cell cross-talk in the production of glomerular ECM. Notably, compared with monoculture ECM proteomes, the coculture ECM proteome better resembled a tissue-derived glomerular ECM dataset, indicating its relevance to GBM in vivo. Protein network analyses revealed a common core of 35 highly connected structural ECM proteins that may be important for glomerular ECM assembly. Overall, these findings show the complexity of the glomerular ECM and suggest that both ECM composition and organization are context-dependent.
Copyright © 2014 by the American Society of Nephrology.
1 Communities
1 Members
0 Resources
11 MeSH Terms