Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1290

Publication Record

Connections

Using In Vitro Pull-Down and In-Cell Overexpression Assays to Study Protein Interactions with Arrestin.
Perry NA, Zhan X, Gurevich EV, Iverson TM, Gurevich VV
(2019) Methods Mol Biol 1957: 107-120
MeSH Terms: Animals, Arrestin, Biological Assay, COS Cells, Cercopithecus aethiops, HEK293 Cells, Humans, Immobilized Proteins, Mice, Protein Binding, Protein Interaction Mapping, Recombinant Fusion Proteins
Show Abstract · Added April 1, 2019
Nonvisual arrestins (arrestin-2/arrestin-3) interact with hundreds of G protein-coupled receptor (GPCR) subtypes and dozens of non-receptor signaling proteins. Here we describe the methods used to identify the interaction sites of arrestin-binding partners on arrestin-3 and the use of monofunctional individual arrestin-3 elements in cells. Our in vitro pull-down assay with purified proteins demonstrates that relatively few elements in arrestin engage each partner, whereas cell-based functional assays indicate that certain arrestin elements devoid of other functionalities can perform individual functions in living cells.
0 Communities
1 Members
0 Resources
12 MeSH Terms
An alternative N-terminal fold of the intestine-specific annexin A13a induces dimerization and regulates membrane-binding.
McCulloch KM, Yamakawa I, Shifrin DA, McConnell RE, Foegeding NJ, Singh PK, Mao S, Tyska MJ, Iverson TM
(2019) J Biol Chem 294: 3454-3463
MeSH Terms: Animals, Annexins, Cell Membrane, Epithelial Cells, Humans, Hydrogen-Ion Concentration, Intestinal Mucosa, Intestines, Liposomes, Mice, Models, Molecular, Organ Specificity, Protein Binding, Protein Conformation, alpha-Helical, Protein Multimerization, Protein Structure, Quaternary, Protein Transport
Show Abstract · Added April 1, 2019
Annexin proteins function as Ca-dependent regulators of membrane trafficking and repair that may also modulate membrane curvature. Here, using high-resolution confocal imaging, we report that the intestine-specific annexin A13 (ANX A13) localizes to the tips of intestinal microvilli and determined the crystal structure of the ANX A13a isoform to 2.6 Å resolution. The structure revealed that the N terminus exhibits an alternative fold that converts the first two helices and the associated helix-loop-helix motif into a continuous α-helix, as stabilized by a domain-swapped dimer. We also found that the dimer is present in solution and partially occludes the membrane-binding surfaces of annexin, suggesting that dimerization may function as a means for regulating membrane binding. Accordingly, as revealed by binding and cellular localization assays, ANX A13a variants that favor a monomeric state exhibited increased membrane association relative to variants that favor the dimeric form. Together, our findings support a mechanism for how the association of the ANX A13a isoform with the membrane is regulated.
© 2019 McCulloch et al.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Functional and structural similarity of human DNA primase [4Fe4S] cluster domain constructs.
Holt ME, Salay LE, O'Brien E, Barton JK, Chazin WJ
(2018) PLoS One 13: e0209345
MeSH Terms: Binding Sites, Circular Dichroism, Crystallography, X-Ray, DNA, DNA Primase, Molecular Docking Simulation, Nuclear Magnetic Resonance, Biomolecular, Oxidation-Reduction, Protein Binding, Protein Domains, Protein Structure, Secondary, RNA
Show Abstract · Added March 26, 2019
The regulatory subunit of human DNA primase has a C-terminal domain (p58C) that contains a [4Fe4S] cluster and binds DNA. Previous electrochemical analysis of a p58C construct revealed that its affinity for DNA is sensitive to the redox state of the [4Fe4S] cluster. Concerns about the validity of this conclusion have been raised, based in part on differences in X-ray crystal structures of the p58C272-464 construct used for that study and that of a N-terminally shifted p58C266-456 construct and consequently, an assumption that p58C272-464 has abnormal physical and functional properties. To address this controversy, a new p58C266-464 construct containing all residues was crystallized under the conditions previously used for crystallizing p58C272-464, and the solution structures of both constructs were assessed using circular dichroism and NMR spectroscopy. In the new crystal structure, p58C266-464 exhibits the same elements of secondary structure near the DNA binding site as observed in the crystal structure of p58C272-464. Moreover, in solution, circular dichroism and 15N,1H-heteronuclear single quantum coherence (HSQC) NMR spectra show there are no significant differences in the distribution of secondary structures or in the tertiary structure or the two constructs. To validate that the two constructs have the same functional properties, binding of a primed DNA template was measured using a fluorescence-based DNA binding assay, and the affinities for this substrate were the same (3.4 ± 0.5 μM and 2.7 ± 0.3 μM, respectively). The electrochemical properties of p58C266-464 were also measured and this p58C construct was able to engage in redox switching on DNA with the same efficiency as p58C272-464. Together, these results show that although p58C can be stabilized in different conformations in the crystalline state, in solution there is effectively no difference in the structure and functional properties of p58C constructs of different lengths.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Molecular Basis for the Evolution of Species-Specific Hemoglobin Capture by Staphylococcus aureus.
Choby JE, Buechi HB, Farrand AJ, Skaar EP, Barber MF
(2018) MBio 9:
MeSH Terms: Animals, Cation Transport Proteins, Evolution, Molecular, Hemoglobins, Host-Pathogen Interactions, Iron, Mutation, Primates, Protein Binding, Species Specificity, Staphylococcus aureus
Show Abstract · Added April 7, 2019
Metals are a limiting resource for pathogenic bacteria and must be scavenged from host proteins. Hemoglobin provides the most abundant source of iron in the human body and is required by several pathogens to cause invasive disease. However, the consequences of hemoglobin evolution for bacterial nutrient acquisition remain unclear. Here we show that the α- and β-globin genes exhibit strikingly parallel signatures of adaptive evolution across simian primates. Rapidly evolving sites in hemoglobin correspond to binding interfaces of IsdB, a bacterial hemoglobin receptor harbored by pathogenic Using an evolution-guided experimental approach, we demonstrate that the divergence between primates and staphylococcal isolates governs hemoglobin recognition and bacterial growth. The reintroduction of putative adaptive mutations in α- or β-globin proteins was sufficient to impair binding, providing a mechanism for the evolution of disease resistance. These findings suggest that bacterial hemoprotein capture has driven repeated evolutionary conflicts with hemoglobin during primate descent. During infection, bacteria must steal metals, including iron, from the host tissue. Therefore, pathogenic bacteria have evolved metal acquisition systems to overcome the elaborate processes mammals use to withhold metal from pathogens. uses IsdB, a hemoglobin receptor, to thieve iron-containing heme from hemoglobin within human blood. We find evidence that primate hemoglobin has undergone rapid evolution at protein surfaces contacted by IsdB. Additionally, variation in the hemoglobin sequences among primates, or variation in IsdB of related staphylococci, reduces bacterial hemoglobin capture. Together, these data suggest that has evolved to recognize human hemoglobin in the face of rapid evolution at the IsdB binding interface, consistent with repeated evolutionary conflicts in the battle for iron during host-pathogen interactions.
Copyright © 2018 Choby et al.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Substrate Binding Regulates Redox Signaling in Human DNA Primase.
O'Brien E, Holt ME, Salay LE, Chazin WJ, Barton JK
(2018) J Am Chem Soc 140: 17153-17162
MeSH Terms: DNA, DNA Primase, Electrochemical Techniques, Humans, Iron-Sulfur Proteins, Nucleotides, Oxidation-Reduction, Protein Binding, Protein Domains, Transcription Elongation, Genetic, Transcription Initiation, Genetic
Show Abstract · Added March 26, 2019
Generation of daughter strands during DNA replication requires the action of DNA primase to synthesize an initial short RNA primer on the single-stranded DNA template. Primase is a heterodimeric enzyme containing two domains whose activity must be coordinated during primer synthesis: an RNA polymerase domain in the small subunit (p48) and a [4Fe4S] cluster-containing C-terminal domain of the large subunit (p58C). Here we examine the redox switching properties of the [4Fe4S] cluster in the full p48/p58 heterodimer using DNA electrochemistry. Unlike with isolated p58C, robust redox signaling in the primase heterodimer requires binding of both DNA and NTPs; NTP binding shifts the p48/p58 cluster redox potential into the physiological range, generating a signal near 160 mV vs NHE. Preloading of primase with NTPs enhances catalytic activity on primed DNA, suggesting that primase configurations promoting activity are more highly populated in the NTP-bound protein. We propose that p48/p58 binding of anionic DNA and NTPs affects the redox properties of the [4Fe4S] cluster; this electrostatic change is likely influenced by the alignment of primase subunits during activity because the configuration affects the [4Fe4S] cluster environment and coupling to DNA bases for redox signaling. Thus, both binding of polyanionic substrates and configurational dynamics appear to influence [4Fe4S] redox signaling properties. These results suggest that these factors should be considered generally in characterizing signaling networks of large, multisubunit DNA-processing [4Fe4S] enzymes.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal.
Warren GM, Stein RA, Mchaourab HS, Eichman BF
(2018) Int J Mol Sci 19:
MeSH Terms: DNA, DNA Helicases, DNA Replication, DNA-Binding Proteins, Models, Molecular, Molecular Conformation, Mutation, Nucleic Acid Conformation, Protein Binding, Protein Interaction Domains and Motifs, Structure-Activity Relationship
Show Abstract · Added August 26, 2019
RecG catalyzes reversal of stalled replication forks in response to replication stress in bacteria. The protein contains a fork recognition ("wedge") domain that binds branched DNA and a superfamily II (SF2) ATPase motor that drives translocation on double-stranded (ds)DNA. The mechanism by which the wedge and motor domains collaborate to catalyze fork reversal in RecG and analogous eukaryotic fork remodelers is unknown. Here, we used electron paramagnetic resonance (EPR) spectroscopy to probe conformational changes between the wedge and ATPase domains in response to fork DNA binding by RecG. Upon binding DNA, the ATPase-C lobe moves away from both the wedge and ATPase-N domains. This conformational change is consistent with a model of RecG fully engaged with a DNA fork substrate constructed from a crystal structure of RecG bound to a DNA junction together with recent cryo-electron microscopy (EM) structures of chromatin remodelers in complex with dsDNA. We show by mutational analysis that a conserved loop within the translocation in RecG (TRG) motif that was unstructured in the RecG crystal structure is essential for fork reversal and DNA-dependent conformational changes. Together, this work helps provide a more coherent model of fork binding and remodeling by RecG and related eukaryotic enzymes.
0 Communities
1 Members
0 Resources
MeSH Terms
Activated CaMKII Binds to the mGlu Metabotropic Glutamate Receptor and Modulates Calcium Mobilization.
Marks CR, Shonesy BC, Wang X, Stephenson JR, Niswender CM, Colbran RJ
(2018) Mol Pharmacol 94: 1352-1362
MeSH Terms: Animals, Calcium, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Calmodulin, Cell Line, Cell Membrane, Female, HEK293 Cells, Humans, Immunoprecipitation, Male, Mice, Mice, Knockout, Protein Binding, Receptor, Metabotropic Glutamate 5, Signal Transduction
Show Abstract · Added November 8, 2018
Ca/calmodulin-dependent protein kinase II (CaMKII) and metabotropic glutamate receptor 5 (mGlu) are critical signaling molecules in synaptic plasticity and learning/memory. Here, we demonstrate that mGlu is present in CaMKII complexes isolated from mouse forebrain. Further in vitro characterization showed that the membrane-proximal region of the C-terminal domain (CTD) of mGlu directly interacts with purified Thr286-autophosphorylated (activated) CaMKII However, the binding of CaMKII to this CTD fragment is reduced by the addition of excess Ca/calmodulin or by additional CaMKII autophosphorylation at non-Thr286 sites. Furthermore, in vitro binding of CaMKII is dependent on a tribasic residue motif Lys-Arg-Arg (KRR) at residues 866-868 of the mGlu-CTD, and mutation of this motif decreases the coimmunoprecipitation of CaMKII with full-length mGlu expressed in heterologous cells by about 50%. The KRR motif is required for two novel functional effects of coexpressing constitutively active CaMKII with mGlu in heterologous cells. First, cell-surface biotinylation studies showed that CaMKII increases the surface expression of mGlu Second, using Ca fluorimetry and single-cell Ca imaging, we found that CaMKII reduces the initial peak of mGlu-mediated Ca mobilization by about 25% while doubling the relative duration of the Ca signal. These findings provide new insights into the physical and functional coupling of these key regulators of postsynaptic signaling.
Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
1 Communities
1 Members
0 Resources
16 MeSH Terms
How Superantigens Bind MHC.
Van Kaer L
(2018) J Immunol 201: 1817-1818
MeSH Terms: Animals, Antigens, Bacterial, Clonal Deletion, Enterotoxins, Histocompatibility Antigens, Humans, Lymphocyte Activation, Minor Lymphocyte Stimulatory Antigens, Peptide Fragments, Protein Binding, Receptors, Antigen, T-Cell, alpha-beta, Superantigens, T-Lymphocytes
Added March 26, 2019
0 Communities
1 Members
0 Resources
13 MeSH Terms
Interplay between ER Ca Binding Proteins, STIM1 and STIM2, Is Required for Store-Operated Ca Entry.
Nelson HA, Leech CA, Kopp RF, Roe MW
(2018) Int J Mol Sci 19:
MeSH Terms: 3T3 Cells, Animals, Calcium, Calcium Signaling, Fluorescence Resonance Energy Transfer, Green Fluorescent Proteins, Humans, Membrane Microdomains, Mice, Neoplasm Proteins, ORAI1 Protein, Protein Binding, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2
Show Abstract · Added July 6, 2018
Store-operated calcium entry (SOCE), a fundamentally important homeostatic and Ca signaling pathway in many types of cells, is activated by the direct interaction of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum (ER) Ca-binding protein, with Ca-selective Orai1 channels localized in the plasma membrane. While much is known about the regulation of SOCE by STIM1, the role of stromal interaction molecule 2 (STIM2) in SOCE remains incompletely understood. Here, using clustered regularly interspaced short palindromic repeats -CRISPR associated protein 9 (CRISPR-Cas9) genomic editing and molecular imaging, we investigated the function of STIM2 in NIH 3T3 fibroblast and αT3 cell SOCE. We found that deletion of expression reduced SOCE by more than 90% in NIH 3T3 cells. STIM1 expression levels were unaffected in the null cells. However, quantitative confocal fluorescence imaging demonstrated that in the absence of expression, STIM1 did not translocate or form punctae in plasma membrane-associated ER membrane (PAM) junctions following ER Ca store depletion. Fluorescence resonance energy transfer (FRET) imaging of intact, living cells revealed that the formation of STIM1 and Orai1 complexes in PAM nanodomains was significantly reduced in the knockout cells. Our findings indicate that STIM2 plays an essential role in regulating SOCE in NIH 3T3 and αT3 cells and suggests that dynamic interplay between STIM1 and STIM2 induced by ER Ca store discharge is necessary for STIM1 translocation, its interaction with Orai1, and activation of SOCE.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Structural and Functional Features of the Reovirus σ1 Tail.
Dietrich MH, Ogden KM, Long JM, Ebenhoch R, Thor A, Dermody TS, Stehle T
(2018) J Virol 92:
MeSH Terms: Amino Acid Sequence, Capsid Proteins, Cells, Cultured, Crystallography, X-Ray, Protein Binding, Protein Conformation, Receptors, Virus, Reoviridae, Reoviridae Infections, Sequence Homology, Virus Attachment, Virus Internalization, Virus Replication
Show Abstract · Added April 3, 2019
Mammalian orthoreovirus attachment to target cells is mediated by the outer capsid protein σ1, which projects from the virion surface. The σ1 protein is a homotrimer consisting of a filamentous tail, which is partly inserted into the virion; a body domain constructed from β-spiral repeats; and a globular head with receptor-binding properties. The σ1 tail is predicted to form an α-helical coiled coil. Although σ1 undergoes a conformational change during cell entry, the nature of this change and its contributions to viral replication are unknown. Electron micrographs of σ1 molecules released from virions identified three regions of flexibility, including one at the midpoint of the molecule, that may be involved in its structural rearrangement. To enable a detailed understanding of essential σ1 tail organization and properties, we determined high-resolution structures of the reovirus type 1 Lang (T1L) and type 3 Dearing (T3D) σ1 tail domains. Both molecules feature extended α-helical coiled coils, with T1L σ1 harboring central chloride ions. Each molecule displays a discontinuity (stutter) within the coiled coil and an unexpectedly seamless transition to the body domain. The transition region features conserved interdomain interactions and appears rigid rather than highly flexible. Functional analyses of reoviruses containing engineered σ1 mutations suggest that conserved residues predicted to stabilize the coiled-coil-to-body junction are essential for σ1 folding and encapsidation, whereas central chloride ion coordination and the stutter are dispensable for efficient replication. Together, these findings enable modeling of full-length reovirus σ1 and provide insight into the stabilization of a multidomain virus attachment protein. While it is established that different conformational states of attachment proteins of enveloped viruses mediate receptor binding and membrane fusion, less is understood about how such proteins mediate attachment and entry of nonenveloped viruses. The filamentous reovirus attachment protein σ1 binds cellular receptors; contains regions of predicted flexibility, including one at the fiber midpoint; and undergoes a conformational change during cell entry. Neither the nature of the structural change nor its contribution to viral infection is understood. We determined crystal structures of large σ1 fragments for two different reovirus serotypes. We observed an unexpectedly tight transition between two domains spanning the fiber midpoint, which allows for little flexibility. Studies of reoviruses with engineered changes near the σ1 midpoint suggest that the stabilization of this region is critical for function. Together with a previously determined structure, we now have a complete model of the full-length, elongated reovirus σ1 attachment protein.
Copyright © 2018 American Society for Microbiology.
0 Communities
1 Members
0 Resources
MeSH Terms