Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 68

Publication Record

Connections

Levuglandin forms adducts with histone h4 in a cyclooxygenase-2-dependent manner, altering its interaction with DNA.
Carrier EJ, Zagol-Ikapitte I, Amarnath V, Boutaud O, Oates JA
(2014) Biochemistry 53: 2436-41
MeSH Terms: Chromatography, Liquid, Cyclooxygenase 2, DNA, Histones, Mass Spectrometry, Prostaglandin D2, Prostaglandins E, Solubility
Show Abstract · Added January 22, 2015
Inflammation and subsequent cyclooxygenase-2 (COX-2) activity has long been linked with the development of cancer, although little is known about any epigenetic effects of COX-2. A product of COX-2 activation, levuglandin (LG) quickly forms covalent bonds with nearby primary amines, such as those in lysine, which leads to LG-protein adducts. Here, we demonstrate that COX-2 activity causes LG-histone adducts in cultured cells and liver tissue, detectable through LC-MS, with the highest incidence in histone H4. Adduction is blocked by a γ-ketoaldehyde scavenger, which has no effect on COX-2 activity as measured by PGE2 production. Formation of the LG-histone adduct is associated with an increased histone solubility in NaCl, indicating destabilization of the nucleosome structure; this is also reversed with scavenger treatment. These data demonstrate that COX-2 activity can cause histone adduction and loosening of the nucleosome complex, which could lead to altered transcription and contribute to carcinogenesis.
0 Communities
2 Members
0 Resources
8 MeSH Terms
Nrf2 is essential for the expression of lipocalin-prostaglandin D synthase induced by prostaglandin D2.
Kim KH, Sadikot RT, Xiao L, Christman JW, Freeman ML, Chan JY, Oh YK, Blackwell TS, Joo M
(2013) Free Radic Biol Med 65: 1134-1142
MeSH Terms: Amino Acid Sequence, Animals, Base Sequence, Binding Sites, Cell Line, Cyclooxygenase 2, Intramolecular Oxidoreductases, Lipocalins, Lipopolysaccharides, Lung, Macrophages, Mice, Mice, Inbred C57BL, Mice, Knockout, NF-E2-Related Factor 2, Neutrophil Infiltration, Neutrophils, Pneumonia, Promoter Regions, Genetic, Prostaglandin D2, Protein Binding, RNA Interference, RNA, Small Interfering, Sequence Analysis, DNA, Toll-Like Receptor 4
Show Abstract · Added March 7, 2014
Nrf2 is a transcription factor that protects against inflammatory diseases, but the underlying mechanism of this effect remains unclear. Here, we report that Nrf2 uses lipocalin-prostaglandin D synthase (L-PGDS) as a mechanism for suppressing inflammation. Exogenously added prostaglandin D2 (PGD2) induced L-PGDS expression in bone-marrow-derived macrophages (BMDMs), suggesting a positive feedback loop between L-PGDS expression and PGD2. Unlike lipopolysaccharide (LPS)-induced L-PGDS expression, PGD2-mediated expression was independent of MAPK, PU.1, or TLR4. Sequence analysis located a putative Nrf2 binding site in the murine L-PGDS promoter, to which Nrf2 bound when treated with PGD2. Chemical activation, or overexpression, of Nrf2 was sufficient to induce L-PGDS expression in macrophages, BMDMs, or lungs of Nrf2-knockout (KO) mice, but treatment with PGD2 failed to do so, suggesting a pivotal role for Nrf2 in the expression of L-PGDS. Consistent with this, expression of Nrf2 in the lungs of Nrf2-KO mice was sufficient to induce the expression of L-PGDS and to reduce neutrophilic lung inflammation elicited by LPS. Furthermore, expression of L-PGDS in mouse lungs decreased neutrophilic infiltration, ameliorating lung inflammation in mice. Together, our results show that Nrf2, activated by PGD2, induced L-PGDS expression, resulting in decreased inflammation. We suggest that the positive feedback induction of L-PGDS by PGD2 is part of the mechanism by which Nrf2 regulates inflammation.
© 2013 Elsevier Inc. All rights reserved.
1 Communities
2 Members
0 Resources
25 MeSH Terms
Human platelets generate phospholipid-esterified prostaglandins via cyclooxygenase-1 that are inhibited by low dose aspirin supplementation.
Aldrovandi M, Hammond VJ, Podmore H, Hornshaw M, Clark SR, Marnett LJ, Slatter DA, Murphy RC, Collins PW, O'Donnell VB
(2013) J Lipid Res 54: 3085-97
MeSH Terms: Aspirin, Blood Platelets, Calcium, Cyclooxygenase 1, Cyclooxygenase Inhibitors, Dinoprostone, Dose-Response Relationship, Drug, Esterification, Feedback, Physiological, Humans, Intracellular Space, MAP Kinase Kinase 1, Phosphatidylethanolamines, Phospholipids, Platelet Activation, Prostaglandin D2, Prostaglandins, Protein Kinase C, Receptor, PAR-1, Thrombin, src-Family Kinases
Show Abstract · Added March 7, 2014
Oxidized phospholipids (oxPLs) generated nonenzymatically display pleiotropic biological actions in inflammation. Their generation by cellular cyclooxygenases (COXs) is currently unknown. To determine whether platelets generate prostaglandin (PG)-containing oxPLs, then characterize their structures and mechanisms of formation, we applied precursor scanning-tandem mass spectrometry to lipid extracts of agonist-activated human platelets. Thrombin, collagen, or ionophore activation stimulated generation of families of PGs comprising PGE₂ and D₂ attached to four phosphatidylethanolamine (PE) phospholipids (16:0p/, 18:1p/, 18:0p/, and 18:0a/). They formed within 2 to 5 min of activation in a calcium, phospholipase C, p38 MAP kinases, MEK1, cPLA₂, and src tyrosine kinase-dependent manner (28.1 ± 2.3 pg/2 × 10⁸ platelets). Unlike free PGs, they remained cell associated, suggesting an autocrine mode of action. Their generation was inhibited by in vivo aspirin supplementation (75 mg/day) or in vitro COX-1 blockade. Inhibitors of fatty acyl reesterification blocked generation significantly, while purified COX-1 was unable to directly oxidize PE in vitro. This indicates that they form in platelets via rapid esterification of COX-1 derived PGE₂/D₂ into PE. In summary, COX-1 in human platelets acutely mediates membrane phospholipid oxidation via formation of PG-esterified PLs in response to pathophysiological agonists.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Quantification of major urinary metabolites of PGE2 and PGD2 in cystic fibrosis: correlation with disease severity.
Jabr S, Gartner S, Milne GL, Roca-Ferrer J, Casas J, Moreno A, Gelpí E, Picado C
(2013) Prostaglandins Leukot Essent Fatty Acids 89: 121-6
MeSH Terms: Adolescent, Child, Cystic Fibrosis, Dinoprostone, Female, Humans, Male, Prostaglandin D2
Show Abstract · Added March 26, 2014
Cystic fibrosis transmembrane conductance (CFTR) alterations are involved in the overproduction of prostaglandins (PG) in CF in vitro. We assessed the relationship between PGE-M and PGD-M urinary metabolites of PGE2 and PGD2 and CF severity. Twenty-four controls and 35 CF patients were recruited. PGE-M and PGD-M levels were measured by liquid chromatography/mass spectrometry and results were expressed as median and 25th-75th interquartile of ng/mg creatinine (Cr). PGE-M (15.63; 9.07-43.35ng/mg Cr) and PGD-M (2.16; 1.43-3.53ng/mg Cr) concentrations were higher in CF than in controls: PGE-M, (6.63; 4.35-8.60ng/mg Cr); PGD-M (1.23; 0.96-1.54ng/mg Cr). There was no correlation between metabolite levels and spirometric values. Patients with pancreatic insufficiency (n=29) had higher PGE-M levels (19.09; 9.36-52.69ng/mg Cr) than those with conserved function (n=6) (9.61; 5.78-14.34ng/mg Cr). PGE-M levels were associated with genotype severity: mild (7.14; 5.76-8.76, n=8), moderate (16.67; 13.67-28.62ng/mg Cr, n=5) and severe (22.82; 10.67-84.13ng/mg Cr). Our study confirms the key role of CFTR in the regulation of the cyclooxygenase pathway of arachidonic acid metabolism found in in vitro studies.
Copyright © 2013 Elsevier Ltd. All rights reserved.
1 Communities
1 Members
0 Resources
8 MeSH Terms
Prostaglandin metabolite induces inhibition of TRPA1 and channel-dependent nociception.
Weng Y, Batista-Schepman PA, Barabas ME, Harris EQ, Dinsmore TB, Kossyreva EA, Foshage AM, Wang MH, Schwab MJ, Wang VM, Stucky CL, Story GM
(2012) Mol Pain 8: 75
MeSH Terms: Animals, Ganglia, Spinal, Male, Mice, Mice, Knockout, Mustard Plant, Nociception, Plant Oils, Prostaglandin D2, Prostaglandins, TRPA1 Cation Channel, Transient Receptor Potential Channels
Show Abstract · Added May 15, 2015
BACKGROUND - The Transient Receptor Potential (TRP) ion channel TRPA1 is a key player in pain pathways. Irritant chemicals activate ion channel TRPA1 via covalent modification of N-terminal cysteines. We and others have shown that 15-Deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2) similarly activates TRPA1 and causes channel-dependent nociception. Paradoxically, 15d-PGJ2 can also be anti-nociceptive in several pain models. Here we hypothesized that activation and subsequent desensitization of TRPA1 in dorsal root ganglion (DRG) neurons underlies the anti-nociceptive property of 15d-PGJ2. To investigate this, we utilized a battery of behavioral assays and intracellular Ca2+ imaging in DRG neurons to test if pre-treatment with 15d-PGJ2 inhibited TRPA1 to subsequent stimulation.
RESULTS - Intraplantar pre-injection of 15d-PGJ2, in contrast to mustard oil (AITC), attenuated acute nocifensive responses to subsequent injections of 15d-PGJ2 and AITC, but not capsaicin (CAP). Intraplantar 15d-PGJ2-administered after the induction of inflammation-reduced mechanical hypersensitivity in the Complete Freund's Adjuvant (CFA) model for up to 2 h post-injection. The 15d-PGJ2-mediated reduction in mechanical hypersensitivity is dependent on TRPA1, as this effect was absent in TRPA1 knockout mice. Ca2+ imaging studies of DRG neurons demonstrated that 15d-PGJ2 pre-exposure reduced the magnitude and number of neuronal responses to AITC, but not CAP. AITC responses were not reduced when neurons were pre-exposed to 15d-PGJ2 combined with HC-030031 (TRPA1 antagonist), demonstrating that inhibitory effects of 15d-PGJ2 depend on TRPA1 activation. Single daily doses of 15d-PGJ2, administered during the course of 4 days in the CFA model, effectively reversed mechanical hypersensitivity without apparent tolerance or toxicity.
CONCLUSIONS - Taken together, our data support the hypothesis that 15d-PGJ2 induces activation followed by persistent inhibition of TRPA1 channels in DRG sensory neurons in vitro and in vivo. Moreover, we demonstrate novel evidence that 15d-PGJ2 is analgesic in mouse models of pain via a TRPA1-dependent mechanism. Collectively, our studies support that TRPA1 agonists may be useful as pain therapeutics.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Observation of two modes of inhibition of human microsomal prostaglandin E synthase 1 by the cyclopentenone 15-deoxy-Δ(12,14)-prostaglandin J(2).
Prage EB, Morgenstern R, Jakobsson PJ, Stec DF, Voehler MW, Armstrong RN
(2012) Biochemistry 51: 2348-56
MeSH Terms: Anti-Inflammatory Agents, Binding Sites, Glutathione, Humans, Inflammation, Intramolecular Oxidoreductases, Mass Spectrometry, Microsomes, Prostaglandin D2, Prostaglandin-E Synthases
Show Abstract · Added March 3, 2020
Microsomal prostaglandin E synthase 1 (MPGES1) is an enzyme that produces the pro-inflammatory molecule prostaglandin E(2) (PGE(2)). Effective inhibitors of MPGES1 are of considerable pharmacological interest for the selective control of pain, fever, and inflammation. The isoprostane, 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), a naturally occurring degradation product of prostaglandin D(2), is known to have anti-inflammatory properties. In this paper, we demonstrate that 15d-PGJ(2) can inhibit MPGES1 by covalent modification of residue C59 and by noncovalent inhibition through binding at the substrate (PGH(2)) binding site. The mechanism of inhibition is dissected by analysis of the native enzyme and the MPGES1 C59A mutant in the presence of glutathione (GSH) and glutathione sulfonate. The location of inhibitor adduction and noncovalent binding was determined by triple mass spectrometry sequencing and with backbone amide H/D exchange mass spectrometry. The kinetics, regiochemistry, and stereochemistry of the spontaneous reaction of GSH with 15d-PGJ(2) were determined. The question of whether the anti-inflammatory properties of 15d-PGJ(2) are due to inhibition of MPGES1 is discussed.
0 Communities
1 Members
0 Resources
MeSH Terms
Amniotic fluid eicosanoids in preterm and term births: effects of risk factors for spontaneous preterm labor.
Menon R, Fortunato SJ, Milne GL, Brou L, Carnevale C, Sanchez SC, Hubbard L, Lappas M, Drobek CO, Taylor RN
(2011) Obstet Gynecol 118: 121-34
MeSH Terms: Amniotic Fluid, Apgar Score, Arachidonic Acid, Case-Control Studies, Cross-Sectional Studies, Dinoprost, Dinoprostone, F2-Isoprostanes, Female, Humans, Lipid Peroxidation, Mass Spectrometry, Obstetric Labor, Premature, Oxidative Stress, Pregnancy, Prostaglandin D2, Smoking, Term Birth
Show Abstract · Added March 26, 2014
OBJECTIVE - To evaluate amniotic fluid arachidonic acid metabolites using enzymatic and nonenzymatic (lipid peroxidation) pathways in spontaneous preterm birth and term births, and to estimate whether prostanoid concentrations correlate with risk factors (race, cigarette smoking, and microbial invasion of amniotic cavity) associated with preterm birth.
METHODS - In a case-control study, amniotic fluid was collected at the time of labor or during cesarean delivery. Amniotic fluid samples were subjected to gas chromatography, negative ion chemical ionization, and mass spectrometry for prostaglandin (PG) E2, PGF2α, and PGD2 and for 6-keto-PGF1α (thromboxane 2 and F2-isoprostane). Primary analysis examined differences between prostanoid concentrations in preterm birth (n=133) compared with term births (n=189). Secondary stratified analyses (by race, cigarette smoking, and microbial invasion of amniotic cavity) compared eicosanoid concentrations in three epidemiological risk factors.
RESULTS - Amniotic fluid F2-isoprostane, PGE2, and PGD2 were significantly higher at term than in preterm birth, whereas PGF2α was higher in preterm birth 6-keto-PGF1α and thromboxane 2 concentrations were not different. Data stratified by race (African American or white) showed no significant disparity among prostanoid concentrations. Regardless of gestational age status, F2-isoprostane was threefold higher in smokers, and other eicosanoids were also higher in smokers compared with nonsmokers. Preterm birth with microbial invasion of amniotic cavity had significantly higher F2-isoprostane compared with preterm birth without microbial invasion of amniotic cavity.
CONCLUSION - Most amniotic fluid eicosanoid concentrations (F2-isoprostane, PGE2, and PGD2), are higher at term than in preterm births. The only amniotic fluid eicosanoid that is not higher at term is PGF2α.
1 Communities
1 Members
0 Resources
18 MeSH Terms
Nonenzymatic free radical-catalyzed generation of 15-deoxy-Δ(12,14)-prostaglandin J₂-like compounds (deoxy-J₂-isoprostanes) in vivo.
Hardy KD, Cox BE, Milne GL, Yin H, Roberts LJ
(2011) J Lipid Res 52: 113-24
MeSH Terms: Animals, Arachidonic Acid, Catalysis, Free Radicals, Glutathione, Humans, Isoprostanes, Kinetics, Ligands, Liver, Male, Oxidative Stress, Prostaglandin D2, Rats, Rats, Sprague-Dawley
Show Abstract · Added March 26, 2014
15-Deoxy-Δ(12,14)-prostaglandin J₂ (15-d-PGJ₂) is a reactive cyclopentenone eicosanoid generated from the dehydration of cyclooxygenase-derived prostaglandin D₂ (PGD₂). This compound possesses an α,β-unsaturated carbonyl moiety that can readily adduct thiol-containing biomolecules such as glutathione and cysteine residues of proteins via the Michael addition. Due to its reactivity, 15-d-PGJ₂ is thought to modulate inflammatory and apoptotic processes and is believed to be an endogenous ligand for peroxisome proliferator-activated receptor-γ. However, the extent to which 15-d-PGJ₂ is formed in vivo and the mechanisms that regulate its formation are unknown. Previously, we have reported the formation of PGD₂ and PGJ₂-like compounds, termed D₂/J₂-isoprostanes (D₂/J₂-IsoPs), produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid (AA). Based on these findings, we investigated whether 15-d-PGJ₂-like compounds are also formed via this nonenzymatic pathway. Here we report the generation of novel 15-d-PGJ₂-like compounds, termed deoxy-J₂-isoprostanes (deoxy-J₂-IsoPs), in vivo, via the nonenzymatic peroxidation of AA. Levels of deoxy-J₂-IsoPs increased 12-fold (6.4 ± 1.1 ng/g liver) in rats after oxidant insult by CCl₄ treatment, compared with basal levels (0.55 ± 0.21 ng/g liver). These compounds may have important bioactivities in vivo under conditions associated with oxidant stress.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Lipopolysaccharide-dependent interaction between PU.1 and c-Jun determines production of lipocalin-type prostaglandin D synthase and prostaglandin D2 in macrophages.
Joo M, Kwon M, Cho YJ, Hu N, Pedchenko TV, Sadikot RT, Blackwell TS, Christman JW
(2009) Am J Physiol Lung Cell Mol Physiol 296: L771-9
MeSH Terms: Animals, Base Sequence, Binding Sites, Cell Line, Female, Humans, Intramolecular Oxidoreductases, JNK Mitogen-Activated Protein Kinases, Lipocalins, Lipopolysaccharides, Macrophages, Male, Mice, Mice, Inbred C57BL, Models, Biological, Molecular Sequence Data, Promoter Regions, Genetic, Prostaglandin D2, Protein Binding, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-jun, Trans-Activators, Transcriptional Activation, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added March 5, 2014
Previously, we reported that expression of lipocalin-prostaglandin D synthase (L-PGDS) is inducible in macrophages and protects from Pseudomonas pneumonia. Here, we investigated the mechanism by which L-PGDS gene expression is induced in macrophages. A promoter analysis of the murine L-PGDS promoter located a binding site of PU.1, a transcription factor essential for macrophage development and inflammatory gene expression. A chromatin immunoprecipitation assay showed that PU.1 bound to the cognate site in the endogenous L-PGDS promoter in response to LPS. Overexpression of PU.1, but not of PU.1(S148A), a mutant inert to casein kinase II (CKII) or NF-kappaB-inducing kinase (NIK), induced L-PGDS in RAW 264.7 cells. Conversely, siRNA silencing of PU.1 expression blunted productions of L-PGDS and prostaglandin D2 (PGD(2)). LPS treatment induced formation of the complex of PU.1 and cJun on the PU.1 site, but inactivation of cJun by treatment with JNK or p38 kinase inhibitor abolished the complex, and suppressed PU.1 transcriptional activity for L-PGDS gene expression. Together, these results show that PU.1, activated by CKII or NIK, cooperates with MAPK-activated cJun to maximally induce L-PGDS expression in macrophages following LPS treatment, and suggest that PU.1 participates in innate immunity through the production of L-PGDS and PGD(2).
0 Communities
1 Members
0 Resources
24 MeSH Terms
Inherited human cPLA(2alpha) deficiency is associated with impaired eicosanoid biosynthesis, small intestinal ulceration, and platelet dysfunction.
Adler DH, Cogan JD, Phillips JA, Schnetz-Boutaud N, Milne GL, Iverson T, Stein JA, Brenner DA, Morrow JD, Boutaud O, Oates JA
(2008) J Clin Invest 118: 2121-31
MeSH Terms: Arachidonic Acid, Blood Platelets, Calcium, Eicosanoids, Group IV Phospholipases A2, Heterozygote, Humans, Intestine, Small, Ionophores, Male, Middle Aged, Models, Biological, Prostaglandin D2, Prostaglandin-Endoperoxide Synthases, Thromboxane A2, Ulcer
Show Abstract · Added December 10, 2013
Cytosolic phospholipase A2alpha (cPLA2alpha) hydrolyzes arachidonic acid from cellular membrane phospholipids, thereby providing enzymatic substrates for the synthesis of eicosanoids, such as prostaglandins and leukotrienes. Considerable understanding of cPLA2alpha function has been derived from investigations of the enzyme and from cPLA2alpha-null mice, but knowledge of discrete roles for this enzyme in humans is limited. We investigated a patient hypothesized to have an inherited prostanoid biosynthesis deficiency due to his multiple, complicated small intestinal ulcers despite no use of cyclooxygenase inhibitors. Levels of thromboxane B2 and 12-hydroxyeicosatetraenoic acid produced by platelets and leukotriene B4 released from calcium ionophore-activated blood were markedly reduced, indicating defective enzymatic release of the arachidonic acid substrate for the corresponding cyclooxygenase and lipoxygenases. Platelet aggregation and degranulation induced by adenosine diphosphate or collagen were diminished but were normal in response to arachidonic acid. Two heterozygous single base pair mutations and a known SNP were found in the coding regions of the patient's cPLA2alpha genes (p.[Ser111Pro]+[Arg485His; Lys651Arg]). The total PLA2 activity in sonicated platelets was diminished, and the urinary metabolites of prostacyclin, prostaglandin E2, prostaglandin D2, and thromboxane A2 were also reduced. These findings characterize what we believe is a novel inherited deficiency of cPLA2.
2 Communities
3 Members
0 Resources
16 MeSH Terms