Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 652

Publication Record

Connections

IRE1α-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain.
Chopra S, Giovanelli P, Alvarado-Vazquez PA, Alonso S, Song M, Sandoval TA, Chae CS, Tan C, Fonseca MM, Gutierrez S, Jimenez L, Subbaramaiah K, Iwawaki T, Kingsley PJ, Marnett LJ, Kossenkov AV, Crespo MS, Dannenberg AJ, Glimcher LH, Romero-Sandoval EA, Cubillos-Ruiz JR
(2019) Science 365:
MeSH Terms: Animals, Cells, Cultured, Cyclooxygenase 2, Dinoprostone, Endoribonucleases, Humans, Leukocytes, Mice, Mice, Inbred C57BL, Myeloid Cells, Pain, Postoperative, Promoter Regions, Genetic, Prostaglandin-E Synthases, Protein-Serine-Threonine Kinases, Signal Transduction, Unfolded Protein Response, Visceral Pain, X-Box Binding Protein 1
Show Abstract · Added March 12, 2020
Inositol-requiring enzyme 1[α] (IRE1[α])-X-box binding protein spliced (XBP1) signaling maintains endoplasmic reticulum (ER) homeostasis while controlling immunometabolic processes. Yet, the physiological consequences of IRE1α-XBP1 activation in leukocytes remain unexplored. We found that induction of prostaglandin-endoperoxide synthase 2 (/Cox-2) and prostaglandin E synthase (/mPGES-1) was compromised in IRE1α-deficient myeloid cells undergoing ER stress or stimulated through pattern recognition receptors. Inducible biosynthesis of prostaglandins, including the pro-algesic mediator prostaglandin E2 (PGE), was decreased in myeloid cells that lack IRE1α or XBP1 but not other ER stress sensors. Functional XBP1 transactivated the human and genes to enable optimal PGE production. Mice that lack IRE1α-XBP1 in leukocytes, or that were treated with IRE1α inhibitors, demonstrated reduced pain behaviors in PGE-dependent models of pain. Thus, IRE1α-XBP1 is a mediator of prostaglandin biosynthesis and a potential target to control pain.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Sequence Characteristics Distinguish Transcribed Enhancers from Promoters and Predict Their Breadth of Activity.
Colbran LL, Chen L, Capra JA
(2019) Genetics 211: 1205-1217
MeSH Terms: Base Composition, Enhancer Elements, Genetic, Histone Code, Humans, Models, Genetic, Promoter Regions, Genetic, Support Vector Machine, Transcription Factors, Transcriptional Activation
Show Abstract · Added March 3, 2020
Enhancers and promoters both regulate gene expression by recruiting transcription factors (TFs); however, the degree to which enhancer promoter activity is due to differences in their sequences or to genomic context is the subject of ongoing debate. We examined this question by analyzing the sequences of thousands of transcribed enhancers and promoters from hundreds of cellular contexts previously identified by cap analysis of gene expression. Support vector machine classifiers trained on counts of all possible 6-bp-long sequences (6-mers) were able to accurately distinguish promoters from enhancers and distinguish their breadth of activity across tissues. Classifiers trained to predict enhancer activity also performed well when applied to promoter prediction tasks, but promoter-trained classifiers performed poorly on enhancers. This suggests that the learned sequence patterns predictive of enhancer activity generalize to promoters, but not vice versa. Our classifiers also indicate that there are functionally relevant differences in enhancer and promoter GC content beyond the influence of CpG islands. Furthermore, sequences characteristic of broad promoter or broad enhancer activity matched different TFs, with predicted ETS- and RFX-binding sites indicative of promoters, and AP-1 sites indicative of enhancers. Finally, we evaluated the ability of our models to distinguish enhancers and promoters defined by histone modifications. Separating these classes was substantially more difficult, and this difference may contribute to ongoing debates about the similarity of enhancers and promoters. In summary, our results suggest that high-confidence transcribed enhancers and promoters can largely be distinguished based on biologically relevant sequence properties.
Copyright © 2019 by the Genetics Society of America.
0 Communities
1 Members
0 Resources
MeSH Terms
Transgene-associated human growth hormone expression in pancreatic β-cells impairs identification of sex-based gene expression differences.
Stancill JS, Osipovich AB, Cartailler JP, Magnuson MA
(2019) Am J Physiol Endocrinol Metab 316: E196-E209
MeSH Terms: Animals, Female, Gene Expression, Genes, Reporter, Green Fluorescent Proteins, Human Growth Hormone, Humans, Insulin, Insulin-Secreting Cells, Male, Mice, Mice, Transgenic, Promoter Regions, Genetic, RNA, Messenger, Sex Factors, Transgenes
Show Abstract · Added December 14, 2018
Fluorescent protein reporter genes are widely used to identify and sort murine pancreatic β-cells. In this study, we compared use of the MIP-GFP transgene, which exhibits aberrant expression of human growth hormone (hGH), with a newly derived Ins2 allele that lacks hGH expression on the expression of sex-specific genes. β-Cells from MIP-GFP transgenic mice exhibit changes in the expression of 7,733 genes, or greater than half of their transcriptome, compared with β-cells from Ins2 mice. To determine how these differences might affect a typical differential gene expression study, we analyzed the effect of sex on gene expression using both reporter lines. Six hundred fifty-seven differentially expressed genes were identified between male and female β-cells containing the Ins2 allele. Female β-cells exhibit higher expression of Xist, Tmed9, Arpc3, Eml2, and several islet-enriched transcription factors, including Nkx2-2 and Hnf4a, whereas male β-cells exhibited a generally higher expression of genes involved in cell cycle regulation. In marked contrast, the same male vs. female comparison of β-cells containing the MIP-GFP transgene revealed only 115 differentially expressed genes, and comparison of the 2 lists of differentially expressed genes revealed only 17 that were common to both analyses. These results indicate that 1) male and female β-cells differ in their expression of key transcription factors and cell cycle regulators and 2) the MIP-GFP transgene may attenuate sex-specific differences that distinguish male and female β-cells, thereby impairing the identification of sex-specific variations.
2 Communities
3 Members
1 Resources
16 MeSH Terms
Immunity drives regulation in cancer through NF-κB.
Collignon E, Canale A, Al Wardi C, Bizet M, Calonne E, Dedeurwaerder S, Garaud S, Naveaux C, Barham W, Wilson A, Bouchat S, Hubert P, Van Lint C, Yull F, Sotiriou C, Willard-Gallo K, Noel A, Fuks F
(2018) Sci Adv 4: eaap7309
MeSH Terms: Adaptive Immunity, Biomarkers, DNA Methylation, Epigenesis, Genetic, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Immunity, Immunity, Innate, Mixed Function Oxygenases, NF-kappa B, Neoplasms, Neoplasms, Basal Cell, Promoter Regions, Genetic, Protein Binding, Proto-Oncogene Proteins
Show Abstract · Added March 31, 2020
Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to regulation. We further demonstrate that repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.
0 Communities
1 Members
0 Resources
MeSH Terms
lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer.
Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S, Cancer Genome Atlas Research Network, Xie W, Yang D
(2018) Cancer Cell 33: 706-720.e9
MeSH Terms: Animals, Binding Sites, Breast Neoplasms, Cell Cycle, Cell Line, Tumor, CpG Islands, DNA Methylation, Epigenesis, Genetic, Female, Gene Expression Regulation, Neoplastic, Humans, Mice, Neoplasm Transplantation, Prognosis, Promoter Regions, Genetic, Proto-Oncogene Proteins c-myc, RNA, Long Noncoding, Up-Regulation
Show Abstract · Added October 30, 2019
We characterized the epigenetic landscape of genes encoding long noncoding RNAs (lncRNAs) across 6,475 tumors and 455 cancer cell lines. In stark contrast to the CpG island hypermethylation phenotype in cancer, we observed a recurrent hypomethylation of 1,006 lncRNA genes in cancer, including EPIC1 (epigenetically-induced lncRNA1). Overexpression of EPIC1 is associated with poor prognosis in luminal B breast cancer patients and enhances tumor growth in vitro and in vivo. Mechanistically, EPIC1 promotes cell-cycle progression by interacting with MYC through EPIC1's 129-283 nt region. EPIC1 knockdown reduces the occupancy of MYC to its target genes (e.g., CDKN1A, CCNA2, CDC20, and CDC45). MYC depletion abolishes EPIC1's regulation of MYC target and luminal breast cancer tumorigenesis in vitro and in vivo.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
An integrative functional genomics framework for effective identification of novel regulatory variants in genome-phenome studies.
Zhao J, Cheng F, Jia P, Cox N, Denny JC, Zhao Z
(2018) Genome Med 10: 7
MeSH Terms: Gene Regulatory Networks, Genetic Predisposition to Disease, Genome, Human, Genome-Wide Association Study, Genomics, Humans, Molecular Sequence Annotation, Organ Specificity, Phenotype, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, Transcription Factors
Show Abstract · Added March 14, 2018
BACKGROUND - Genome-phenome studies have identified thousands of variants that are statistically associated with disease or traits; however, their functional roles are largely unclear. A comprehensive investigation of regulatory mechanisms and the gene regulatory networks between phenome-wide association study (PheWAS) and genome-wide association study (GWAS) is needed to identify novel regulatory variants contributing to risk for human diseases.
METHODS - In this study, we developed an integrative functional genomics framework that maps 215,107 significant single nucleotide polymorphism (SNP) traits generated from the PheWAS Catalog and 28,870 genome-wide significant SNP traits collected from the GWAS Catalog into a global human genome regulatory map via incorporating various functional annotation data, including transcription factor (TF)-based motifs, promoters, enhancers, and expression quantitative trait loci (eQTLs) generated from four major functional genomics databases: FANTOM5, ENCODE, NIH Roadmap, and Genotype-Tissue Expression (GTEx). In addition, we performed a tissue-specific regulatory circuit analysis through the integration of the identified regulatory variants and tissue-specific gene expression profiles in 7051 samples across 32 tissues from GTEx.
RESULTS - We found that the disease-associated loci in both the PheWAS and GWAS Catalogs were significantly enriched with functional SNPs. The integration of functional annotations significantly improved the power of detecting novel associations in PheWAS, through which we found a number of functional associations with strong regulatory evidence in the PheWAS Catalog. Finally, we constructed tissue-specific regulatory circuits for several complex traits: mental diseases, autoimmune diseases, and cancer, via exploring tissue-specific TF-promoter/enhancer-target gene interaction networks. We uncovered several promising tissue-specific regulatory TFs or genes for Alzheimer's disease (e.g. ZIC1 and STX1B) and asthma (e.g. CSF3 and IL1RL1).
CONCLUSIONS - This study offers powerful tools for exploring the functional consequences of variants generated from genome-phenome association studies in terms of their mechanisms on affecting multiple complex diseases and traits.
0 Communities
2 Members
0 Resources
12 MeSH Terms
DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer.
Luo N, Nixon MJ, Gonzalez-Ericsson PI, Sanchez V, Opalenik SR, Li H, Zahnow CA, Nickels ML, Liu F, Tantawy MN, Sanders ME, Manning HC, Balko JM
(2018) Nat Commun 9: 248
MeSH Terms: Animals, Antineoplastic Agents, Azacitidine, Breast Neoplasms, Cell Line, Tumor, DNA (Cytosine-5-)-Methyltransferase 1, Female, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Neoplastic, Genes, MHC Class I, Humans, Mammary Neoplasms, Experimental, Mice, Promoter Regions, Genetic, T-Lymphocytes, Cytotoxic
Show Abstract · Added March 14, 2018
Potentiating anti-tumor immunity by inducing tumor inflammation and T cell-mediated responses are a promising area of cancer therapy. Immunomodulatory agents that promote these effects function via a wide variety of mechanisms, including upregulation of antigen presentation pathways. Here, we show that major histocompatibility class-I (MHC-I) genes are methylated in human breast cancers, suppressing their expression. Treatment of breast cancer cell lines with a next-generation hypomethylating agent, guadecitabine, upregulates MHC-I expression in response to interferon-γ. In murine tumor models of breast cancer, guadecitabine upregulates MHC-I in tumor cells promoting recruitment of CD8+ T cells to the microenvironment. Finally, we show that MHC-I genes are upregulated in breast cancer patients treated with hypomethylating agents. Thus, the immunomodulatory effects of hypomethylating agents likely involve upregulation of class-I antigen presentation to potentiate CD8+ T cell responses. These strategies may be useful to potentiate anti-tumor immunity and responses to checkpoint inhibition in immune-refractory breast cancers.
0 Communities
4 Members
0 Resources
15 MeSH Terms
Transposable Element Exaptation into Regulatory Regions Is Rare, Influenced by Evolutionary Age, and Subject to Pleiotropic Constraints.
Simonti CN, Pavlicev M, Capra JA
(2017) Mol Biol Evol 34: 2856-2869
MeSH Terms: Animals, Biological Evolution, DNA Transposable Elements, Gene Expression Regulation, Genetic Pleiotropy, Humans, Mice, Promoter Regions, Genetic, Regulatory Sequences, Nucleic Acid
Show Abstract · Added March 14, 2018
Transposable element (TE)-derived sequences make up approximately half of most mammalian genomes, and many TEs have been co-opted into gene regulatory elements. However, we lack a comprehensive tissue- and genome-wide understanding of how and when TEs gain regulatory activity in their hosts. We evaluated the prevalence of TE-derived DNA in enhancers and promoters across hundreds of human and mouse cell lines and primary tissues. Promoters are significantly depleted of TEs in all tissues compared with their overall prevalence in the genome (P < 0.001); enhancers are also depleted of TEs, though not as strongly as promoters. The degree of enhancer depletion also varies across contexts (1.5-3×), with reproductive and immune cells showing the highest levels of TE regulatory activity in humans. Overall, in spite of the regulatory potential of many TE sequences, they are significantly less active in gene regulation than expected from their prevalence. TE age is predictive of the likelihood of enhancer activity; TEs originating before the divergence of amniotes are 9.2 times more likely to have enhancer activity than TEs that integrated in great apes. Context-specific enhancers are more likely to be TE-derived than enhancers active in multiple tissues, and young TEs are more likely to overlap context-specific enhancers than old TEs (86% vs. 47%). Once TEs obtain enhancer activity in the host, they have similar functional dynamics to one another and non-TE-derived enhancers, likely driven by pleiotropic constraints. However, a few TE families, most notably endogenous retroviruses, have greater regulatory potential. Our observations suggest a model of regulatory co-option in which TE-derived sequences are initially repressed, after which a small fraction obtains context-specific enhancer activity, with further gains subject to pleiotropic constraints.
© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Expression of receptor-type protein tyrosine phosphatase in developing and adult renal vasculature.
Takahashi K, Kim R, Lauhan C, Park Y, Nguyen NG, Vestweber D, Dominguez MG, Valenzuela DM, Murphy AJ, Yancopoulos GD, Gale NW, Takahashi T
(2017) PLoS One 12: e0177192
MeSH Terms: Animals, Endothelium, Vascular, Kidney, Mice, Phosphorylation, Promoter Regions, Genetic, Protein Tyrosine Phosphatases, Receptor Protein-Tyrosine Kinases
Show Abstract · Added April 6, 2018
Renal vascular development is a coordinated process that requires ordered endothelial cell proliferation, migration, intercellular adhesion, and morphogenesis. In recent decades, studies have defined the pivotal role of endothelial receptor tyrosine kinases (RPTKs) in the development and maintenance of renal vasculature. However, the expression and the role of receptor tyrosine phosphatases (RPTPs) in renal endothelium are poorly understood, though coupled and counterbalancing roles of RPTKs and RPTPs are well defined in other systems. In this study, we evaluated the promoter activity and immunolocalization of two endothelial RPTPs, VE-PTP and PTPμ, in developing and adult renal vasculature using the heterozygous LacZ knock-in mice and specific antibodies. In adult kidneys, both VE-PTP and PTPμ were expressed in the endothelium of arterial, glomerular, and medullary vessels, while their expression was highly limited in peritubular capillaries and venous endothelium. VE-PTP and PTPμ promoter activity was also observed in medullary tubular segments in adult kidneys. In embryonic (E12.5, E13.5, E15.5, E17.5) and postnatal (P0, P3, P7) kidneys, these RPTPs were expressed in ingrowing renal arteries, developing glomerular microvasculature (as early as the S-shaped stage), and medullary vessels. Their expression became more evident as the vasculatures matured. Peritubular capillary expression of VE-PTP was also noted in embryonic and postnatal kidneys. Compared to VE-PTP, PTPμ immunoreactivity was relatively limited in embryonic and neonatal renal vasculature and evident immunoreactivity was observed from the P3 stage. These findings indicate 1) VE-PTP and PTPμ are expressed in endothelium of arterial, glomerular, and medullary renal vasculature, 2) their expression increases as renal vascular development proceeds, suggesting that these RPTPs play a role in maturation and maintenance of these vasculatures, and 3) peritubular capillary VE-PTP expression is down-regulated in adult kidneys, suggesting a role of VE-PTP in the development of peritubular capillaries.
0 Communities
1 Members
0 Resources
MeSH Terms
BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis.
Parang B, Kaz AM, Barrett CW, Short SP, Ning W, Keating CE, Mittal MK, Naik RD, Washington MK, Revetta FL, Smith JJ, Chen X, Wilson KT, Brand T, Bader DM, Tansey WP, Chen R, Brentnall TA, Grady WM, Williams CS
(2017) Gut 66: 852-862
MeSH Terms: Animals, Biomarkers, Tumor, Caco-2 Cells, Carcinogenesis, Cell Adhesion Molecules, Colitis, Colitis, Ulcerative, Colon, Colonic Neoplasms, DNA Methylation, Dextran Sulfate, Down-Regulation, Female, Gene Expression Profiling, HEK293 Cells, Humans, Male, Membrane Proteins, Mice, Mice, Knockout, Muscle Proteins, Promoter Regions, Genetic, Protein Phosphatase 2, Proto-Oncogene Proteins c-myc, RNA, Messenger, Wnt Signaling Pathway
Show Abstract · Added April 15, 2017
OBJECTIVE - Blood vessel epicardial substance (BVES) is a tight junction-associated protein that regulates epithelial-mesenchymal states and is underexpressed in epithelial malignancy. However, the functional impact of BVES loss on tumourigenesis is unknown. Here we define the in vivo role of BVES in colitis-associated cancer (CAC), its cellular function and its relevance to patients with IBD.
DESIGN - We determined promoter methylation status using an Infinium HumanMethylation450 array screen of patients with UC with and without CAC. We also measured mRNA levels in a tissue microarray consisting of normal colons and CAC samples. and wild-type mice (controls) were administered azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce tumour formation. Last, we used a yeast two-hybrid screen to identify BVES interactors and performed mechanistic studies in multiple cell lines to define how BVES reduces c-Myc levels.
RESULTS - mRNA was reduced in tumours from patients with CAC via promoter hypermethylation. Importantly, promoter hypermethylation was concurrently present in distant non-malignant-appearing mucosa. As seen in human patients, was underexpressed in experimental inflammatory carcinogenesis, and mice had increased tumour multiplicity and degree of dysplasia after AOM/DSS administration. Molecular analysis of tumours revealed Wnt activation and increased c-Myc levels. Mechanistically, we identified a new signalling pathway whereby BVES interacts with PR61α, a protein phosphatase 2A regulatory subunit, to mediate c-Myc destruction.
CONCLUSION - Loss of BVES promotes inflammatory tumourigenesis through dysregulation of Wnt signalling and the oncogene c-Myc. promoter methylation status may serve as a CAC biomarker.
Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
0 Communities
4 Members
0 Resources
26 MeSH Terms