Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 48

Publication Record

Connections

Neuronal activity drives FMRP- and HSPG-dependent matrix metalloproteinase function required for rapid synaptogenesis.
Dear ML, Shilts J, Broadie K
(2017) Sci Signal 10:
MeSH Terms: Animals, Disease Models, Animal, Drosophila Proteins, Drosophila melanogaster, Fragile X Syndrome, Heparan Sulfate Proteoglycans, Matrix Metalloproteinase 1, Matrix Metalloproteinase 2, Neuromuscular Junction, Neurons, Presynaptic Terminals, Proteoglycans, Wnt Signaling Pathway
Show Abstract · Added December 7, 2017
Matrix metalloproteinase (MMP) functions modulate synapse formation and activity-dependent plasticity. Aberrant MMP activity is implicated in fragile X syndrome (FXS), a disease caused by the loss of the RNA-binding protein FMRP and characterized by neurological dysfunction and intellectual disability. Gene expression studies in suggest that Mmps cooperate with the heparan sulfate proteoglycan (HSPG) glypican co-receptor Dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling and that synaptogenic defects in the fly model of FXS are alleviated by either inhibition of Mmp or genetic reduction of Dlp. We used the neuromuscular junction (NMJ) glutamatergic synapse to test activity-dependent Dlp and Mmp intersections in the context of FXS. We found that rapid, activity-dependent synaptic bouton formation depended on secreted Mmp1. Acute neuronal stimulation reduced the abundance of Mmp2 but increased that of both Mmp1 and Dlp, as well as enhanced the colocalization of Dlp and Mmp1 at the synapse. Dlp function promoted Mmp1 abundance, localization, and proteolytic activity around synapses. Dlp glycosaminoglycan (GAG) chains mediated this functional interaction with Mmp1. In the FXS fly model, activity-dependent increases in Mmp1 abundance and activity were lost but were restored by reducing the amount of synaptic Dlp. The data suggest that neuronal activity-induced, HSPG-dependent Mmp regulation drives activity-dependent synaptogenesis and that this is impaired in FXS. Thus, exploring this mechanism further may reveal therapeutic targets that have the potential to restore synaptogenesis in FXS patients.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
1 Communities
0 Members
0 Resources
13 MeSH Terms
Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging.
Sottile SY, Hackett TA, Cai R, Ling L, Llano DA, Caspary DM
(2017) J Neurosci 37: 11377-11389
MeSH Terms: Aging, Animals, Cells, Cultured, Evoked Potentials, Auditory, Geniculate Bodies, Presynaptic Terminals, Rats, Rats, Inbred F344, Receptors, Nicotinic, Sensory Receptor Cells
Show Abstract · Added April 3, 2018
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population.
Copyright © 2017 the authors 0270-6474/17/3711378-13$15.00/0.
0 Communities
1 Members
0 Resources
MeSH Terms
A Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry.
Zhang J, Weinrich JAP, Russ JB, Comer JD, Bommareddy PK, DiCasoli RJ, Wright CVE, Li Y, van Roessel PJ, Kaltschmidt JA
(2017) Cell Rep 21: 666-678
MeSH Terms: Animals, Biomarkers, Dystonia, GABAergic Neurons, Genetic Predisposition to Disease, Interneurons, Male, Mice, Mutant Strains, Molecular Chaperones, Mutation, Nerve Net, Presynaptic Terminals, Proprioception, Spinal Cord, Transcription Factors
Show Abstract · Added November 7, 2017
Spinal interneurons are critical modulators of motor circuit function. In the dorsal spinal cord, a set of interneurons called GABApre presynaptically inhibits proprioceptive sensory afferent terminals, thus negatively regulating sensory-motor signaling. Although deficits in presynaptic inhibition have been inferred in human motor diseases, including dystonia, it remains unclear whether GABApre circuit components are altered in these conditions. Here, we use developmental timing to show that GABApre neurons are a late Ptf1a-expressing subclass and localize to the intermediate spinal cord. Using a microarray screen to identify genes expressed in this intermediate population, we find the kelch-like family member Klhl14, implicated in dystonia through its direct binding with torsion-dystonia-related protein Tor1a. Furthermore, in Tor1a mutant mice in which Klhl14 and Tor1a binding is disrupted, formation of GABApre sensory afferent synapses is impaired. Our findings suggest a potential contribution of GABApre neurons to the deficits in presynaptic inhibition observed in dystonia.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
2 Communities
1 Members
0 Resources
15 MeSH Terms
KCC3 loss-of-function contributes to Andermann syndrome by inducing activity-dependent neuromuscular junction defects.
Bowerman M, Salsac C, Bernard V, Soulard C, Dionne A, Coque E, Benlefki S, Hince P, Dion PA, Butler-Browne G, Camu W, Bouchard JP, Delpire E, Rouleau GA, Raoul C, Scamps F
(2017) Neurobiol Dis 106: 35-48
MeSH Terms: Agenesis of Corpus Callosum, Animals, Carbamazepine, Cells, Cultured, Chlorides, Disease Models, Animal, Mice, Inbred C57BL, Mice, Transgenic, Motor Neurons, Neuromuscular Junction, Neurotransmitter Agents, Peripheral Nervous System Diseases, Presynaptic Terminals, Sodium-Potassium-Exchanging ATPase, Spinal Cord, Symporters, Synaptic Transmission
Show Abstract · Added April 3, 2018
Loss-of-function mutations in the potassium-chloride cotransporter KCC3 lead to Andermann syndrome, a severe sensorimotor neuropathy characterized by areflexia, amyotrophy and locomotor abnormalities. The molecular events responsible for axonal loss remain poorly understood. Here, we establish that global or neuron-specific KCC3 loss-of-function in mice leads to early neuromuscular junction (NMJ) abnormalities and muscular atrophy that are consistent with the pre-synaptic neurotransmission defects observed in patients. KCC3 depletion does not modify chloride handling, but promotes an abnormal electrical activity among primary motoneurons and mislocalization of Na/K-ATPase α1 in spinal cord motoneurons. Moreover, the activity-targeting drug carbamazepine restores Na/K-ATPase α1 localization and reduces NMJ denervation in Slc12a6 mice. We here propose that abnormal motoneuron electrical activity contributes to the peripheral neuropathy observed in Andermann syndrome.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model.
Parkinson WM, Dookwah M, Dear ML, Gatto CL, Aoki K, Tiemeyer M, Broadie K
(2016) Dis Model Mech 9: 513-27
MeSH Terms: Animals, Congenital Disorders of Glycosylation, Disease Models, Animal, Down-Regulation, Drosophila, Drosophila Proteins, Extracellular Matrix, Glycoproteins, Glycosylation, Longevity, Movement, Neuromuscular Junction, Oligosaccharides, Phosphotransferases (Phosphomutases), Polysaccharides, Posture, Presynaptic Terminals, Signal Transduction, Synapses, Synaptic Transmission
Show Abstract · Added March 29, 2017
Congenital disorders of glycosylation (CDGs) constitute a rapidly growing family of human diseases resulting from heritable mutations in genes driving the production and modification of glycoproteins. The resulting symptomatic hypoglycosylation causes multisystemic defects that include severe neurological impairments, revealing a particularly critical requirement for tightly regulated glycosylation in the nervous system. The most common CDG, CDG-Ia (PMM2-CDG), arises from phosphomannomutase type 2 (PMM2) mutations. Here, we report the generation and characterization of the first Drosophila CDG-Ia model. CRISPR-generated pmm2-null Drosophila mutants display severely disrupted glycosylation and early lethality, whereas RNAi-targeted knockdown of neuronal PMM2 results in a strong shift in the abundance of pauci-mannose glycan, progressive incoordination and later lethality, closely paralleling human CDG-Ia symptoms of shortened lifespan, movement impairments and defective neural development. Analyses of the well-characterized Drosophila neuromuscular junction (NMJ) reveal synaptic glycosylation loss accompanied by defects in both structural architecture and functional neurotransmission. NMJ synaptogenesis is driven by intercellular signals that traverse an extracellular synaptomatrix and are co-regulated by glycosylation and matrix metalloproteinases (MMPs). Specifically, trans-synaptic signaling by the Wnt protein Wingless (Wg) depends on the heparan sulfate proteoglycan (HSPG) co-receptor Dally-like protein (Dlp), which is regulated by synaptic MMP activity. Loss of synaptic MMP2, Wg ligand, Dlp co-receptor and downstream trans-synaptic signaling occurs with PMM2 knockdown. Taken together, this Drosophila CDG disease model provides a new avenue for the dissection of cellular and molecular mechanisms underlying neurological impairments and is a means by which to discover and test novel therapeutic treatment strategies.
© 2016. Published by The Company of Biologists Ltd.
1 Communities
1 Members
0 Resources
20 MeSH Terms
The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention.
Parikh V, St Peters M, Blakely RD, Sarter M
(2013) J Neurosci 33: 2326-37
MeSH Terms: Acetylcholine, Animals, Attention, Female, Male, Membrane Transport Proteins, Mice, Mice, Inbred C57BL, Mice, Transgenic, Presynaptic Terminals, Random Allocation
Show Abstract · Added July 10, 2013
Functional variation in the gene encoding the presynaptic choline transporter (CHT) has been linked to attention-deficit/hyperactivity disorder. Here, we report that a heterozygous deletion in the CHT gene in mice (CHT(+/-)) limits the capacity of cholinergic neurons to sustain acetylcholine (ACh) release and attentional performance. Cortical microdialysis and amperometric methods revealed that, whereas wild-type and CHT(+/-) animals support equivalent basal ACh release and choline clearance, CHT(+/-) animals exhibit a significant inability to elevate extracellular ACh following basal forebrain stimulation, in parallel with a diminished choline clearance capacity following cessation of stimulation. Consistent with these findings, the density of CHTs in cortical synaptosomal plasma membrane-enriched fractions from unstimulated CHT(+/-) animals matched those observed in wild-type animals despite reductions in CHT levels in total extracts, achieved via a redistribution of CHT from vesicle pools. As a consequence, in CHT(+/-) animals, basal forebrain stimulation was unable to mobilize wild-type quantities of CHT to the plasma membrane. In behavioral studies, CHT(+/-) mice were impaired in performing a sustained attention task known to depend on cortical cholinergic activity. In wild-type mice, but not CHT(+/-) mice, attentional performance increased the density of CHTs in the synaptosomal membrane in the right frontal cortex. Basal CHT levels in vesicle-enriched membranes predicted the degree of CHT mobilization as well as individual variations in performance on the sustained attention task. Our findings demonstrate biochemical and physiological alterations that underlie cognitive impairments associated with genetically imposed reductions in choline uptake capacity.
1 Communities
1 Members
0 Resources
11 MeSH Terms
Defective presynaptic choline transport underlies hereditary motor neuropathy.
Barwick KE, Wright J, Al-Turki S, McEntagart MM, Nair A, Chioza B, Al-Memar A, Modarres H, Reilly MM, Dick KJ, Ruggiero AM, Blakely RD, Hurles ME, Crosby AH
(2012) Am J Hum Genet 91: 1103-7
MeSH Terms: Adult, Female, Humans, Male, Middle Aged, Motor Neuron Disease, Pedigree, Phenotype, Presynaptic Terminals, Symporters
Show Abstract · Added July 10, 2013
The neuromuscular junction (NMJ) is a specialized synapse with a complex molecular architecture that provides for reliable transmission between the nerve terminal and muscle fiber. Using linkage analysis and whole-exome sequencing of DNA samples from subjects with distal hereditary motor neuropathy type VII, we identified a mutation in SLC5A7, which encodes the presynaptic choline transporter (CHT), a critical determinant of synaptic acetylcholine synthesis and release at the NMJ. This dominantly segregating SLC5A7 mutation truncates the encoded product just beyond the final transmembrane domain, eliminating cytosolic-C-terminus sequences known to regulate surface transporter trafficking. Choline-transport assays in both transfected cells and monocytes from affected individuals revealed significant reductions in hemicholinium-3-sensitive choline uptake, a finding consistent with a dominant-negative mode of action. The discovery of CHT dysfunction underlying motor neuropathy identifies a biological basis for this group of conditions and widens the spectrum of disorders that derive from impaired NMJ transmission. Our findings compel consideration of mutations in SLC5A7 or its functional partners in relation to unexplained motor neuronopathies.
Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Nonoisotopic assay for the presynaptic choline transporter reveals capacity for allosteric modulation of choline uptake.
Ruggiero AM, Wright J, Ferguson SM, Lewis M, Emerson KS, Iwamoto H, Ivy MT, Holmstrand EC, Ennis EA, Weaver CD, Blakely RD
(2012) ACS Chem Neurosci 3: 767-81
MeSH Terms: Allosteric Regulation, Animals, COS Cells, Chlorocebus aethiops, Choline, Female, HEK293 Cells, High-Throughput Screening Assays, Humans, Membrane Transport Proteins, Presynaptic Terminals, Protein Transport, Xenopus laevis
Show Abstract · Added July 10, 2013
Current therapies to enhance CNS cholinergic function rely primarily on extracellular acetylcholinesterase (AChE) inhibition, a pharmacotherapeutic strategy that produces dose-limiting side effects. The Na(+)-dependent, high-affinity choline transporter (CHT) is an unexplored target for cholinergic medication development. Although functional at the plasma membrane, CHT at steady-state is localized to synaptic vesicles such that vesicular fusion can support a biosynthetic response to neuronal excitation. To identify allosteric potentiators of CHT activity, we mapped endocytic sequences in the C-terminus of human CHT, identifying transporter mutants that exhibit significantly increased transport function. A stable HEK-293 cell line was generated from one of these mutants (CHT LV-AA) and used to establish a high-throughput screen (HTS) compatible assay based on the electrogenic nature of the transporter. We established that the addition of choline to these cells, at concentrations appropriate for high-affinity choline transport at presynaptic terminals, generates a hemicholinium-3 (HC-3)-sensitive, membrane depolarization that can be used for the screening of CHT inhibitors and activators. Using this assay, we discovered that staurosporine increased CHT LV-AA choline uptake activity, an effect mediated by a decrease in choline K(M) with no change in V(max). As staurosporine did not change surface levels of CHT, nor inhibit HC-3 binding, we propose that its action is directly or indirectly allosteric in nature. Surprisingly, staurosporine reduced choline-induced membrane depolarization, suggesting that increased substrate coupling to ion gradients, arising at the expense of nonstoichiometric ion flow, accompanies a shift of CHT to a higher-affinity state. Our findings provide a new approach for the identification of CHT modulators that is compatible with high-throughput screening approaches and presents a novel model by which small molecules can enhance substrate flux through enhanced gradient coupling.
1 Communities
4 Members
0 Resources
13 MeSH Terms
TRIP8b-independent trafficking and plasticity of adult cortical presynaptic HCN1 channels.
Huang Z, Lujan R, Martinez-Hernandez J, Lewis AS, Chetkovich DM, Shah MM
(2012) J Neurosci 32: 14835-48
MeSH Terms: Animals, Cerebral Cortex, Cyclic Nucleotide-Gated Cation Channels, Excitatory Postsynaptic Potentials, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Membrane Proteins, Mice, Mice, 129 Strain, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Neuronal Plasticity, Peroxins, Potassium Channels, Presynaptic Terminals, Protein Transport, Random Allocation
Show Abstract · Added April 2, 2019
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are subthreshold activated voltage-gated ion channels. In the cortex, these channels are predominantly expressed in dendrites where they significantly modify dendritic intrinsic excitability as well synaptic potential shapes and integration. HCN channel trafficking to dendrites is regulated by the protein, TRIP8b. Additionally, altered TRIP8b expression may be one mechanism underlying seizure-induced dendritic HCN channel plasticity. HCN channels, though, are also located in certain mature cortical synaptic terminals, where they play a vital role in modulating synaptic transmission. In this study, using electrophysiological recordings as well as electron microscopy we show that presynaptic, but not dendritic, cortical HCN channel expression and function is comparable in adult TRIP8b-null mice and wild-type littermates. We further investigated whether presynaptic HCN channels undergo seizure-dependent plasticity. We found that, like dendritic channels, wild-type presynaptic HCN channel function was persistently decreased following induction of kainic acid-induced seizures. Since TRIP8b does not affect presynaptic HCN subunit trafficking, seizure-dependent plasticity of these cortical HCN channels is not conditional upon TRIP8b. Our results, thus, suggest that the molecular mechanisms underlying HCN subunit targeting, expression and plasticity in adult neurons is compartment selective, providing a means by which pre- and postsynaptic processes that are critically dependent upon HCN channel function may be distinctly influenced.
0 Communities
1 Members
0 Resources
MeSH Terms
Ex vivo identification of protein-protein interactions involving the dopamine transporter.
Hadlock GC, Nelson CC, Baucum AJ, Hanson GR, Fleckenstein AE
(2011) J Neurosci Methods 196: 303-7
MeSH Terms: Animals, Brain Chemistry, Dopamine Plasma Membrane Transport Proteins, Male, Nerve Tissue Proteins, Neurochemistry, Presynaptic Terminals, Protein Interaction Mapping, Proteomics, Rats, Rats, Sprague-Dawley, Synaptosomes
Show Abstract · Added December 7, 2012
The dopamine (DA) transporter (DAT) is a key regulator of dopaminergic signaling as it mediates the reuptake of extrasynaptic DA and thereby terminates dopaminergic signaling. Emerging evidence indicates that DAT function is influenced through interactions with other proteins. The current report describes a method to identify such interactions following DAT immunoprecipitation from a rat striatal synaptosomal preparation. This subcellular fraction was selected since DAT function is often determined ex vivo by measuring DA uptake in this preparation and few reports investigating DAT-protein interactions have utilized this preparation. Following SDS-PAGE and colloidal Coomassie staining, selected protein bands from a DAT-immunoprecipitate were excised, digested with trypsin, extracted, and analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS). From the analysis of the tryptic peptides, several proteins were identified including DAT, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) β, CaMKII δ, protein kinase C (PKC) β, and PKC γ. Co-immunoprecipitation of PKC, CaMKII, and protein interacting with C kinase-1 with DAT was confirmed by Western blotting. Thus, the present study highlights a method to immunoprecipitate DAT and to identify co-immunoprecipitating proteins using LC/MS/MS and Western blotting. This method can be utilized to evaluate DAT protein-protein interactions but also to assess interactions involving other synaptic proteins. Ex vivo identification of protein-protein interactions will provide new insight into the function and regulation of a variety of synaptic, membrane-associated proteins, including DAT.
Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
12 MeSH Terms