Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 241

Publication Record

Connections

Epithelial Heparan Sulfate Contributes to Alveolar Barrier Function and Is Shed during Lung Injury.
Haeger SM, Liu X, Han X, McNeil JB, Oshima K, McMurtry SA, Yang Y, Ouyang Y, Zhang F, Nozik-Grayck E, Zemans RL, Tuder RM, Bastarache JA, Linhardt RJ, Schmidt EP
(2018) Am J Respir Cell Mol Biol 59: 363-374
MeSH Terms: Animals, Capillary Permeability, Endothelium, Vascular, Glycocalyx, Heparitin Sulfate, Lipopolysaccharides, Lung Injury, Mice, Respiratory Distress Syndrome, Adult, Syndecans
Show Abstract · Added May 31, 2018
The lung epithelial glycocalyx is a carbohydrate-enriched layer lining the pulmonary epithelial surface. Although epithelial glycocalyx visualization has been reported, its composition and function remain unknown. Using immunofluorescence and mass spectrometry, we identified heparan sulfate (HS) and chondroitin sulfate within the lung epithelial glycocalyx. In vivo selective enzymatic degradation of epithelial HS, but not chondroitin sulfate, increased lung permeability. Using mass spectrometry and gel electrophoresis approaches to determine the fate of epithelial HS during lung injury, we detected shedding of 20 saccharide-long or greater HS into BAL fluid in intratracheal LPS-treated mice. Furthermore, airspace HS in clinical samples from patients with acute respiratory distress syndrome correlated with indices of alveolar permeability, reflecting the clinical relevance of these findings. The length of HS shed during intratracheal LPS-induced injury (≥20 saccharides) suggests cleavage of the proteoglycan anchoring HS to the epithelial surface, rather than cleavage of HS itself. We used pharmacologic and transgenic animal approaches to determine that matrix metalloproteinases partially mediate HS shedding during intratracheal LPS-induced lung injury. Although there was a trend toward decreased alveolar permeability after treatment with the matrix metalloproteinase inhibitor, doxycycline, this did not reach statistical significance. These studies suggest that epithelial HS contributes to the lung epithelial barrier and its degradation is sufficient to increase lung permeability. The partial reduction of HS shedding achieved with doxycycline is not sufficient to rescue epithelial barrier function during intratracheal LPS-induced lung injury; however, whether complete attenuation of HS shedding is sufficient to rescue epithelial barrier function remains unknown.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Single-Cell Mass Spectrometry Reveals Changes in Lipid and Metabolite Expression in RAW 264.7 Cells upon Lipopolysaccharide Stimulation.
Yang B, Patterson NH, Tsui T, Caprioli RM, Norris JL
(2018) J Am Soc Mass Spectrom 29: 1012-1020
MeSH Terms: Animals, Lipids, Lipopolysaccharides, Macrophages, Mice, RAW 264.7 Cells, Single-Cell Analysis, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added March 22, 2018
It has been widely recognized that individual cells that exist within a large population of cells, even if they are genetically identical, can have divergent molecular makeups resulting from a variety of factors, including local environmental factors and stochastic processes within each cell. Presently, numerous approaches have been described that permit the resolution of these single-cell expression differences for RNA and protein; however, relatively few techniques exist for the study of lipids and metabolites in this manner. This study presents a methodology for the analysis of metabolite and lipid expression at the level of a single cell through the use of imaging mass spectrometry on a high-performance Fourier transform ion cyclotron resonance mass spectrometer. This report provides a detailed description of the overall experimental approach, including sample preparation as well as the data acquisition and analysis strategy for single cells. Applying this approach to the study of cultured RAW264.7 cells, we demonstrate that this method can be used to study the variation in molecular expression with cell populations and is sensitive to alterations in that expression that occurs upon lipopolysaccharide stimulation. Graphical Abstract.
0 Communities
2 Members
0 Resources
8 MeSH Terms
Monitoring uterine contractility in mice using a transcervical intrauterine pressure catheter.
Robuck MF, O'Brien CM, Knapp KM, Shay SD, West JD, Newton JM, Slaughter JC, Paria BC, Reese J, Herington JL
(2018) Reproduction 155: 447-456
MeSH Terms: Animals, Catheters, Disease Models, Animal, Female, Lipopolysaccharides, Mice, Mifepristone, Parturition, Pregnancy, Premature Birth, Pressure, Uterine Contraction
Show Abstract · Added March 31, 2018
In mouse models used to study parturition or pre-clinical therapeutic testing, measurement of uterine contractions is limited to either isometric tension or operative intrauterine pressure (IUP). The goal of this study was to: (1) develop a method for transcervical insertion of a pressure catheter to measure intrauterine contractile pressure during mouse pregnancy, (2) determine whether this method can be utilized numerous times in a single mouse pregnancy without affecting the timing of delivery or fetal outcome and (3) compare the contractile activity between mouse models of term and preterm labor (PTL). Visualization of the cervix allowed intrauterine pressure catheter (IUPC) placement into anesthetized pregnant mice (plug = day 1, delivery = day 19.5). The amplitude, frequency, duration and area under the curve (AUC) of IUP was lowest on days 16-18, increased significantly ( < 0.05) on the morning of day 19 and reached maximal levels during by the afternoon of day 19 and into the intrapartum period. An AUC threshold of 2.77 mmHg discriminated between inactive labor (day 19 am) and active labor (day 19 pm and intrapartum period). Mice examined on a single vs every experimental timepoint did not have significantly different IUP, timing of delivery, offspring number or fetal/neonatal weight. The IUP was significantly greater in LPS-treated and RU486-treated mouse models of PTL compared to time-matched vehicle control mice. Intrapartum IUP was not significantly different between term and preterm mice. We conclude that utilization of a transcervical IUPC allows sensitive assessment of uterine contractile activity and labor progression in mouse models without the need for operative approaches.
© 2018 Society for Reproduction and Fertility.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody.
Kwon YD, Chuang GY, Zhang B, Bailer RT, Doria-Rose NA, Gindin TS, Lin B, Louder MK, McKee K, O'Dell S, Pegu A, Schmidt SD, Asokan M, Chen X, Choe M, Georgiev IS, Jin V, Pancera M, Rawi R, Wang K, Chaudhuri R, Kueltzo LA, Manceva SD, Todd JP, Scorpio DG, Kim M, Reinherz EL, Wagh K, Korber BM, Connors M, Shapiro L, Mascola JR, Kwong PD
(2018) Cell Rep 22: 1798-1809
MeSH Terms: Antibodies, Neutralizing, Cell Membrane, HIV Antibodies, HIV Envelope Protein gp41, HIV-1, Half-Life, Humans, Neutralization Tests, Polysaccharides, Protein Binding
Show Abstract · Added March 14, 2018
Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Neuroinflammation Alters Integrative Properties of Rat Hippocampal Pyramidal Cells.
Frigerio F, Flynn C, Han Y, Lyman K, Lugo JN, Ravizza T, Ghestem A, Pitsch J, Becker A, Anderson AE, Vezzani A, Chetkovich D, Bernard C
(2018) Mol Neurobiol 55: 7500-7511
MeSH Terms: Animals, Dendrites, Down-Regulation, Hippocampus, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Inflammation, Lipopolysaccharides, Male, Membrane Proteins, Microglia, Potassium Channels, Pyramidal Cells, Rats, Sprague-Dawley, Time Factors, Toll-Like Receptor 4
Show Abstract · Added April 2, 2019
Neuroinflammation is consistently found in many neurological disorders, but whether or not the inflammatory response independently affects neuronal network properties is poorly understood. Here, we report that intracerebroventricular injection of the prototypical inflammatory molecule lipopolysaccharide (LPS) in rats triggered a strong and long-lasting inflammatory response in hippocampal microglia associated with a concomitant upregulation of Toll-like receptor (TLR4) in pyramidal and hilar neurons. This, in turn, was associated with a significant reduction of the dendritic hyperpolarization-activated cyclic AMP-gated channel type 1 (HCN1) protein level while Kv4.2 channels were unaltered as assessed by western blot. Immunohistochemistry confirmed the HCN1 decrease in CA1 pyramidal neurons and showed that these changes were associated with a reduction of TRIP8b, an auxiliary subunit for HCN channels implicated in channel subcellular localization and trafficking. At the physiological level, this effect translated into a 50% decrease in HCN1-mediated currents (I) measured in the distal dendrites of hippocampal CA1 pyramidal cells. At the functional level, the band-pass-filtering properties of dendrites in the theta frequency range (4-12 Hz) and their temporal summation properties were compromised. We conclude that neuroinflammation can independently trigger an acquired channelopathy in CA1 pyramidal cell dendrites that alters their integrative properties. By directly changing cellular function, this phenomenon may participate in the phenotypic expression of various brain diseases.
0 Communities
1 Members
0 Resources
MeSH Terms
Lipopolysaccharide-induced maternal inflammation induces direct placental injury without alteration in placental blood flow and induces a secondary fetal intestinal injury that persists into adulthood.
Fricke EM, Elgin TG, Gong H, Reese J, Gibson-Corley KN, Weiss RM, Zimmerman K, Bowdler NC, Kalantera KM, Mills DA, Underwood MA, McElroy SJ
(2018) Am J Reprod Immunol 79: e12816
MeSH Terms: Amniotic Fluid, Animals, Digestive System Diseases, Disease Models, Animal, Female, Fetal Diseases, Inflammation, Interleukins, Lipopolysaccharides, Mice, Mice, Inbred C57BL, Necrosis, Placenta, Placental Insufficiency, Pregnancy, Pregnancy Complications, Regional Blood Flow
Show Abstract · Added March 31, 2018
PROBLEM - Premature birth complicates 10%-12% of deliveries. Infection and inflammation are the most common etiologies and are associated with increased offspring morbidity and mortality. We hypothesize that lipopolysaccharide (LPS)-induced maternal inflammation causes direct placenta injury and subsequent injury to the fetal intestine.
METHOD OF STUDY - Pregnant C57Bl6 mice were injected intraperitoneally on day 15.5 with 100 μg/kg LPS or saline. Maternal serum, amniotic fluid, placental samples, and ileal samples of offspring were obtained assessed for inflammation and/or injury. Maternal placental ultrasounds were performed. Placental DNA was isolated for microbiome analysis.
RESULTS - Maternal injection with LPS caused elevated IL-1β, IL-10, IL-6, KC-GRO, and TNF. Placental tissue showed increased IL-1β, IL-6, and KC-GRO and decreased IL-10, but no changes were observed in amniotic fluid. Placental histology demonstrated LPS-induced increases in mineralization and necrosis, but no difference in placental blood flow. Most placentas had no detectable microbiome. Exposure to maternal LPS induced significant injury to the ilea of the offspring.
CONCLUSION - Lipopolysaccharide causes a maternal inflammatory response that is mirrored in the placenta. Placental histology demonstrates structural changes; however, placental blood flow is preserved. LPS also induces an indirect intestinal injury in the offspring that lasts beyond the neonatal period.
© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models.
Saunders KO, Verkoczy LK, Jiang C, Zhang J, Parks R, Chen H, Housman M, Bouton-Verville H, Shen X, Trama AM, Scearce R, Sutherland L, Santra S, Newman A, Eaton A, Xu K, Georgiev IS, Joyce MG, Tomaras GD, Bonsignori M, Reed SG, Salazar A, Mascola JR, Moody MA, Cain DW, Centlivre M, Zurawski S, Zurawski G, Erickson HP, Kwong PD, Alam SM, Levy Y, Montefiori DC, Haynes BF
(2017) Cell Rep 21: 3681-3690
MeSH Terms: AIDS Vaccines, Amino Acid Sequence, Animals, Antibodies, Neutralizing, Disease Models, Animal, Epitopes, HIV Antibodies, HIV-1, Immunization, Macaca mulatta, Mice, Polysaccharides, Protein Multimerization, Rabbits, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added March 14, 2018
The events required for the induction of broad neutralizing antibodies (bnAbs) following HIV-1 envelope (Env) vaccination are unknown, and their induction in animal models as proof of concept would be critical. Here, we describe the induction of plasma antibodies capable of neutralizing heterologous primary (tier 2) HIV-1 strains in one macaque and two rabbits. Env immunogens were designed to induce CD4 binding site (CD4bs) bnAbs, but surprisingly, the macaque developed V1V2-glycan bnAbs. Env immunization of CD4bs bnAb heavy chain rearrangement (VDJ) knockin mice similarly induced V1V2-glycan neutralizing antibodies (nAbs), wherein the human CD4bs V chains were replaced with mouse rearrangements bearing diversity region (D)-D fusions, creating antibodies with long, tyrosine-rich HCDR3s. Our results show that Env vaccination can elicit broad neutralization of tier 2 HIV-1, demonstrate that V1V2-glycan bnAbs are more readily induced than CD4bs bnAbs, and define V replacement and diversity region fusion as potential mechanisms for generating V1V2-glycan bnAb site antibodies.
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Endothelial nitric oxide synthase modulates Toll-like receptor 4-mediated IL-6 production and permeability via nitric oxide-independent signaling.
Stark RJ, Koch SR, Choi H, Mace EH, Dikalov SI, Sherwood ER, Lamb FS
(2018) FASEB J 32: 945-956
MeSH Terms: Capillary Permeability, Cells, Cultured, Chronic Disease, Endothelial Cells, Gene Expression Regulation, Enzymologic, Humans, Imidazoles, Interleukin-6, Lipopolysaccharides, MAP Kinase Signaling System, Nitric Oxide, Nitric Oxide Synthase Type III, Pyridines, Toll-Like Receptor 4, Vasculitis, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added October 27, 2017
Endothelial dysfunction, characterized by changes in eNOS, is a common finding in chronic inflammatory vascular diseases. These states are associated with increased infectious complications. We hypothesized that alterations in eNOS would enhance the response to LPS-mediated TLR4 inflammation. Human microvascular endothelial cells were treated with sepiapterin or N-nitro-L-arginine methylester (L-NAME) to alter endogenous NO production, and small interfering RNA to knockdown eNOS. Alterations of endogenous NO by sepiapterin, and L-NAME provided no significant changes to LPS inflammation. In contrast, eNOS knockdown greatly enhanced endothelial IL-6 production and permeability in response to LPS. Knockdown of eNOS enhanced LPS-induced p38. Inhibition of p38 with SB203580 prevented IL-6 production, without altering permeability. Knockdown of p38 impaired NF-κB activation. Physical interaction between p38 and eNOS was demonstrated by immunoprecipitation, suggesting a novel, NO-independent mechanism for eNOS regulation of TLR4. In correlation, biopsy samples in patients with systemic lupus erythematous showed reduced eNOS expression with associated elevations in TLR4 and p38, suggesting an in vivo link. Thus, reduced expression of eNOS, as seen in chronic inflammatory disease, was associated with enhanced TLR4 signaling through p38. This may enhance the response to infection in patients with chronic inflammatory conditions.-Stark, R. J., Koch, S. R., Choi, H., Mace, E. H., Dikalov, S. I., Sherwood, E. R., Lamb, F. S. Endothelial nitric oxide synthase modulates Toll-like receptor 4-mediated IL-6 production and permeability via nitric oxide-independent signaling.
0 Communities
3 Members
0 Resources
16 MeSH Terms
Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition.
Suzuki T, Tada Y, Gladson S, Nishimura R, Shimomura I, Karasawa S, Tatsumi K, West J
(2017) Respir Res 18: 177
MeSH Terms: Adamantane, Animals, Dipeptidyl-Peptidase IV Inhibitors, Epithelial-Mesenchymal Transition, Lipopolysaccharides, Lung Injury, Male, Mice, Mice, Inbred C57BL, Nitriles, Pulmonary Fibrosis, Pyrrolidines, Vildagliptin
Show Abstract · Added April 2, 2019
BACKGROUND - Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury.
METHODS - A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice.
RESULTS - Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune cells or GLP-1.
CONCLUSIONS - Inhibiting DPP-4 signaling by vildagliptin could ameliorate pulmonary fibrosis by downregulating EndMT in systemic LPS-induced lung injury.
0 Communities
1 Members
0 Resources
MeSH Terms
Suppressed ubiquitination of Nrf2 by p47 contributes to Nrf2 activation.
Ha Kim K, Sadikot RT, Yeon Lee J, Jeong HS, Oh YK, Blackwell TS, Joo M
(2017) Free Radic Biol Med 113: 48-58
MeSH Terms: Animals, Disease Models, Animal, HEK293 Cells, Humans, Kelch-Like ECH-Associated Protein 1, Lipopolysaccharides, Mice, NADPH Oxidases, NF-E2-Related Factor 2, Pneumonia, RAW 264.7 Cells, Reactive Oxygen Species, Signal Transduction, Ubiquitination
Show Abstract · Added March 21, 2018
Although critical in phagocytosis in innate immunity, reactive oxygen species (ROS) collaterally inflict damage to host phagocytes because they indiscriminate targets. Since Nrf2 increases the expression of anti-oxidant enzymes that nullifies ROS, ROS activating Nrf2 is a critical negative regulatory step for countering the deleterious effects of ROS. Here, we postulate whether, along with ROS activating Nrf2, NADPH oxidase components also participate in direct activation of Nrf2, contributing to protection from ROS. Our results show that the p47 of the NADPH oxidase, but not p65 or p40, physically binds to Nrf2, activating the Nrf2 function. p47 binding to Nrf2/Keap1 complex suppresses the ubiquitination of Nrf2, while p47 becomes ubiquitinated by Keap1. p47 increases the nuclear translocation of Nrf2 and the expression of Nrf2-dependent genes, whereas genetic ablation of p47 decreases the expression of those genes. In a lipopolysaccharide-induced acute lung inflammation mouse model, selective expression of p47 in mouse lungs induces the expression of Nrf2-dependent genes and is sufficient to suppress neutrophilic lung inflammation. Therefore, our findings suggest that p47 is a novel regulator of Nrf2 function.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms