Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1097

Publication Record

Connections

Molecular and epidemiologic characterization of Wilms tumor from Baghdad, Iraq.
Phelps HM, Al-Jadiry MF, Corbitt NM, Pierce JM, Li B, Wei Q, Flores RR, Correa H, Uccini S, Frangoul H, Alsaadawi AR, Al-Badri SAF, Al-Darraji AF, Al-Saeed RM, Al-Hadad SA, Lovvorn Iii HN
(2018) World J Pediatr 14: 585-593
MeSH Terms: Adaptor Proteins, Signal Transducing, Child, Preschool, DNA Topoisomerases, Type II, Female, Homeodomain Proteins, Humans, Immunohistochemistry, Infant, Insulin-Like Growth Factor II, Iraq, Kidney Neoplasms, Male, Multiplex Polymerase Chain Reaction, Mutation, N-Myc Proto-Oncogene Protein, Nerve Tissue Proteins, Neural Cell Adhesion Molecules, Nuclear Proteins, Poly-ADP-Ribose Binding Proteins, Receptors, Retinoic Acid, Sequence Analysis, DNA, Transcription Factors, Tumor Suppressor Protein p53, Tumor Suppressor Proteins, WT1 Proteins, Wilms Tumor, beta Catenin
Show Abstract · Added January 28, 2019
BACKGROUND - Wilms tumor (WT) is the most common childhood kidney cancer worldwide, yet its incidence and clinical behavior vary according to race and access to adequate healthcare resources. To guide and streamline therapy in the war-torn and resource-constrained city of Baghdad, Iraq, we conducted a first-ever molecular analysis of 20 WT specimens to characterize the biological features of this lethal disease within this challenged population.
METHODS - Next-generation sequencing of ten target genes associated with WT development and treatment resistance (WT1, CTNNB1, WTX, IGF2, CITED1, SIX2, p53, N-MYC, CRABP2, and TOP2A) was completed. Immunohistochemistry was performed for 6 marker proteins of WT (WT1, CTNNB1, NCAM, CITED1, SIX2, and p53). Patient outcomes were compiled.
RESULTS - Mutations were detected in previously described WT "hot spots" (e.g., WT1 and CTNNB1) as well as novel loci that may be unique to the Iraqi population. Immunohistochemistry showed expression domains most typical of blastemal-predominant WT. Remarkably, despite the challenges facing families and care providers, only one child, with combined WT1 and CTNNB1 mutations, was confirmed dead from disease. Median clinical follow-up was 40.5 months (range 6-78 months).
CONCLUSIONS - These data suggest that WT biology within a population of Iraqi children manifests features both similar to and unique from disease variants in other regions of the world. These observations will help to risk stratify WT patients living in this difficult environment to more or less intensive therapies and to focus treatment on cell-specific targets.
0 Communities
1 Members
0 Resources
27 MeSH Terms
Integration Mapping of piggyBac-Mediated CD19 Chimeric Antigen Receptor T Cells Analyzed by Novel Tagmentation-Assisted PCR.
Hamada M, Nishio N, Okuno Y, Suzuki S, Kawashima N, Muramatsu H, Tsubota S, Wilson MH, Morita D, Kataoka S, Ichikawa D, Murakami N, Taniguchi R, Suzuki K, Kojima D, Sekiya Y, Nishikawa E, Narita A, Hama A, Kojima S, Nakazawa Y, Takahashi Y
(2018) EBioMedicine 34: 18-26
MeSH Terms: DNA Transposable Elements, High-Throughput Nucleotide Sequencing, Humans, Lentivirus, Polymerase Chain Reaction, Receptors, Antigen, T-Cell, Retroviridae, T-Lymphocytes
Show Abstract · Added December 13, 2018
Insertional mutagenesis is an important risk with all genetically modified cell therapies, including chimeric antigen receptor (CAR)-T cell therapy used for hematological malignancies. Here we describe a new tagmentation-assisted PCR (tag-PCR) system that can determine the integration sites of transgenes without using restriction enzyme digestion (which can potentially bias the detection) and allows library preparation in fewer steps than with other methods. Using this system, we compared the integration sites of CD19-specific CAR genes in final T cell products generated by retrovirus-based and lentivirus-based gene transfer and by the piggyBac transposon system. The piggyBac system demonstrated lower preference than the retroviral system for integration near transcriptional start sites and CpG islands and higher preference than the lentiviral system for integration into genomic safe harbors. Integration into or near proto-oncogenes was similar in all three systems. Tag-PCR mapping is a useful technique for assessing the risk of insertional mutagenesis.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Dynamics of Zebrafish Heart Regeneration Using an HPLC-ESI-MS/MS Approach.
Ma D, Tu C, Sheng Q, Yang Y, Kan Z, Guo Y, Shyr Y, Scott IC, Lou X
(2018) J Proteome Res 17: 1300-1308
MeSH Terms: Animals, Chromatography, High Pressure Liquid, Fish Proteins, Gene Ontology, Heart Injuries, Heart Ventricles, Metabolic Networks and Pathways, Molecular Sequence Annotation, Myocardium, Proteomics, Real-Time Polymerase Chain Reaction, Regeneration, Spectrometry, Mass, Electrospray Ionization, Tumor Suppressor Protein p53, Zebrafish
Show Abstract · Added April 3, 2018
Failure to properly repair damaged due to myocardial infarction is a major cause of heart failure. In contrast with adult mammals, zebrafish hearts show remarkable regenerative capabilities after substantial damage. To characterize protein dynamics during heart regeneration, we employed an HPLC-ESI-MS/MS (mass spectrometry) approach. Myocardium tissues were taken from sham-operated fish and ventricle-resected sample at three different time points (2, 7, and 14 days); dynamics of protein expression were analyzed by an ion-current-based quantitative platform. More than 2000 protein groups were quantified in all 16 experiments. Two hundred and nine heart-regeneration-related protein groups were quantified and clustered into six time-course patterns. Functional analysis indicated that multiple molecular function and metabolic pathways were involved in heart regeneration. Interestingly, Ingenuity Pathway Analysis revealed that P53 signaling was inhibited during the heart regeneration, which was further verified by real-time quantitative polymerase chain reaction (Q-PCR). In summary, we applied systematic proteomics analysis on regenerating zebrafish heart, uncovered the dynamics of regenerative genes expression and regulatory pathways, and provided invaluable insight into design regenerative-based strategies in human hearts.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Rhinovirus Viremia in Patients Hospitalized With Community-Acquired Pneumonia.
Lu X, Schneider E, Jain S, Bramley AM, Hymas W, Stockmann C, Ampofo K, Arnold SR, Williams DJ, Self WH, Patel A, Chappell JD, Grijalva CG, Anderson EJ, Wunderink RG, McCullers JA, Edwards KM, Pavia AT, Erdman DD
(2017) J Infect Dis 216: 1104-1111
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Child, Child, Preschool, Community-Acquired Infections, Female, Humans, Male, Middle Aged, Pneumonia, Viral, Real-Time Polymerase Chain Reaction, Rhinovirus, Viremia
Show Abstract · Added July 27, 2018
Background - Rhinoviruses (RVs) are ubiquitous respiratory pathogens that often cause mild or subclinical infections. Molecular detection of RVs from the upper respiratory tract can be prolonged, complicating etiologic association in persons with severe lower respiratory tract infections. Little is known about RV viremia and its value as a diagnostic indicator in persons hospitalized with community-acquired pneumonia (CAP).
Methods - Sera from RV-positive children and adults hospitalized with CAP were tested for RV by real-time reverse-transcription polymerase chain reaction. Rhinovirus species and type were determined by partial genome sequencing.
Results - Overall, 57 of 570 (10%) RV-positive patients were viremic, and all were children aged <10 years (n = 57/375; 15.2%). Although RV-A was the most common RV species detected from respiratory specimens (48.8%), almost all viremias were RV-C (98.2%). Viremic patients had fewer codetected pathogens and were more likely to have chest retractions, wheezing, and a history of underlying asthma/reactive airway disease than patients without viremia.
Conclusions - More than 1 out of 7 RV-infected children aged <10 years hospitalized with CAP were viremic. In contrast with other RV species, RV-C infections were highly associated with viremia and were usually the only respiratory pathogen identified, suggesting that RV-C viremia may be an important diagnostic indicator in pediatric pneumonia.
Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
0 Communities
1 Members
0 Resources
MeSH Terms
A novel real-time RT-PCR assay for influenza C tested in Peruvian children.
Howard LM, Johnson M, Gil AI, Pekosz A, Griffin MR, Edwards KM, Lanata CF, Grijalva CG, Williams JV, RESPIRA-PERU Group
(2017) J Clin Virol 96: 12-16
MeSH Terms: Child, Preschool, Female, Humans, Infant, Influenza, Human, Influenzavirus C, Male, Molecular Diagnostic Techniques, Peru, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Sensitivity and Specificity
Show Abstract · Added July 27, 2018
BACKGROUND - Influenza C virus (ICV) is associated with acute respiratory illness. Yet ICV remains under recognized, with most previous studies using only culture to identify cases.
OBJECTIVES - To develop a sensitive and specific real-time RT-PCR assay for ICV that allows for rapid and accurate detection in a clinical or research setting.
STUDY DESIGN - Multiple ICV sequences obtained from GenBank were analyzed, including 141 hemagglutinin-esterase (HE), 106 matrix (M), and 97 nucleoprotein (NP) sequences. Primers and probes were designed based on conserved regions. Multiple primer-probe sets were tested against multiple ICV strains.
RESULTS - The ICV M and NP genes offered the most conserved sequence regions. Primers and probes based on newer sequence data offered enhanced detection of ICV, especially for low titer specimens. An NP-targeted assay yielded the best performance and was capable of detecting 10-100 RNA copies per reaction. The NP assay detected multiple clinical isolates of ICV collected in a field epidemiology study conducted in Peru.
CONCLUSIONS - We report a new real-time RT-PCR assay for ICV with high sensitivity and specificity.
Copyright © 2017 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Loss of SPRR3 in ApoE-/- mice leads to atheroma vulnerability through Akt dependent and independent effects in VSMCs.
Lietman CD, Segedy AK, Li B, Fazio S, Atkinson JB, Linton MF, Young PP
(2017) PLoS One 12: e0184620
MeSH Terms: Animals, Apolipoproteins E, Cornified Envelope Proline-Rich Proteins, Female, Fibronectins, Immunoblotting, Mice, Mice, Inbred C57BL, Mice, Knockout, Muscle, Smooth, Vascular, Myocytes, Smooth Muscle, Phosphatidylinositol 3-Kinases, Proto-Oncogene Proteins c-akt, Real-Time Polymerase Chain Reaction, Signal Transduction
Show Abstract · Added April 10, 2018
Vascular smooth muscle cells (VSMCs) represent important modulators of plaque stability in advanced lesions. We previously reported that loss of small proline-rich repeat protein 3 (Sprr3), leads to VSMC apoptosis in a PI3K/Akt-dependent manner and accelerates lesion progression. Here, we investigated the role of Sprr3 in modulating plaque stability in hyperlipidemic ApoE-/- mice. We show that loss of Sprr3 increased necrotic core size and reduced cap collagen content of atheromas in brachiocephalic arteries with evidence of plaque rupture and development of intraluminal thrombi. Moreover, Sprr3-/-ApoE-/- mice developed advanced coronary artery lesions accompanied by intraplaque hemorrhage and left ventricle microinfarcts. SPRR3 is known to reduce VSMC survival in lesions by promoting their apoptosis. In addition, we demonstrated that Sprr3-/- VSMCs displayed reduced expression of procollagen in a PI3K/Akt dependent manner. SPRR3 loss also increased MMP gelatinase activity in lesions, and increased MMP2 expression, migration and contraction of VSMCs independently of PI3K/Akt. Consequently, Sprr3 represents the first described VSMC modulator of each of the critical features of cap stability, including VSMC numbers, collagen type I synthesis, and protease activity through Akt dependent and independent pathways.
0 Communities
1 Members
0 Resources
MeSH Terms
Estimating relative mitochondrial DNA copy number using high throughput sequencing data.
Zhang P, Lehmann BD, Samuels DC, Zhao S, Zhao YY, Shyr Y, Guo Y
(2017) Genomics 109: 457-462
MeSH Terms: Breast Neoplasms, Cell Line, Tumor, Computational Biology, DNA Copy Number Variations, DNA, Mitochondrial, Data Mining, Databases, Genetic, Female, Genes, Essential, High-Throughput Nucleotide Sequencing, Humans, Mitochondria, Real-Time Polymerase Chain Reaction, Sequence Analysis, DNA, Sequence Analysis, RNA, Whole Exome Sequencing
Show Abstract · Added March 21, 2018
We hypothesize that the relative mitochondria copy number (MTCN) can be estimated by comparing the abundance of mitochondrial DNA to nuclear DNA reads using high throughput sequencing data. To test this hypothesis, we examined relative MTCN across 13 breast cancer cell lines using the RT-PCR based NovaQUANT Human Mitochondrial to Nuclear DNA Ratio Kit as the gold standard. Six distinct computational approaches were used to estimate the relative MTCN in order to compare to the RT-PCR measurements. The results demonstrate that relative MTCN correlates well with the RT-PCR measurements using exome sequencing data, but not RNA-seq data. Through analysis of copy number variants (CNVs) in The Cancer Genome Atlas, we show that the two nuclear genes used in the NovaQUANT assay to represent the nuclear genome often experience CNVs in tumor cells, questioning the accuracy of this gold-standard method when it is applied to tumor cells.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Prominin-1 Is a Novel Regulator of Autophagy in the Human Retinal Pigment Epithelium.
Bhattacharya S, Yin J, Winborn CS, Zhang Q, Yue J, Chaum E
(2017) Invest Ophthalmol Vis Sci 58: 2366-2387
MeSH Terms: AC133 Antigen, Adult, Aged, Animals, Autophagy, Blotting, Western, Cells, Cultured, Female, Flow Cytometry, Gene Expression Regulation, Humans, Immunoprecipitation, Macular Degeneration, Male, Microscopy, Confocal, Middle Aged, RNA, Rabbits, Real-Time Polymerase Chain Reaction, Retinal Pigment Epithelium, Signal Transduction, Young Adult
Show Abstract · Added June 11, 2018
Purpose - Prominin-1 (Prom1) is a transmembrane glycoprotein, which is expressed in stem cell lineages, and has recently been implicated in cancer stem cell survival. Mutations in the Prom1 gene have been shown to disrupt photoreceptor disk morphogenesis and cause an autosomal dominant form of Stargardt-like macular dystrophy (STGD4). Despite the apparent structural role of Prom1 in photoreceptors, its role in other cells of the retina is unknown. The purpose of this study is to investigate the role of Prom1 in the highly metabolically active cells of the retinal pigment epithelium (RPE).
Methods - Lentiviral siRNA and the genome editing CRISPR/Cas9 system were used to knockout Prom1 in primary RPE and ARPE-19 cells, respectively. Western blotting, confocal microscopy, and flow sight imaging cytometry assays were used to quantify autophagy flux. Immunoprecipitation was used to detect Prom1 interacting proteins.
Results - Our studies demonstrate that Prom1 is primarily a cytosolic protein in the RPE. Stress signals and physiological aging robustly increase autophagy with concomitant upregulation of Prom1 expression. Knockout of Prom1 increased mTORC1 and mTORC2 signaling, decreased autophagosome trafficking to the lysosome, increased p62 accumulation, and inhibited autophagic puncta induced by activators of autophagy. Conversely, ectopic overexpression of Prom1 inhibited mTORC1 and mTORC2 activities, and potentiated autophagy flux. Through interactions with p62 and HDAC6, Prom1 regulates autophagosome maturation and trafficking, suggesting a new cytoplasmic role of Prom1 in RPE function.
Conclusions - Our results demonstrate that Prom1 plays a key role in the regulation of autophagy via upstream suppression of mTOR signaling and also acting as a component of a macromolecular scaffold involving p62 and HDAC6.
0 Communities
1 Members
0 Resources
MeSH Terms
Procalcitonin as a Marker of Etiology in Adults Hospitalized With Community-Acquired Pneumonia.
Self WH, Balk RA, Grijalva CG, Williams DJ, Zhu Y, Anderson EJ, Waterer GW, Courtney DM, Bramley AM, Trabue C, Fakhran S, Blaschke AJ, Jain S, Edwards KM, Wunderink RG
(2017) Clin Infect Dis 65: 183-190
MeSH Terms: Aged, Antimicrobial Stewardship, Biomarkers, Calcitonin, Community-Acquired Infections, Enterobacteriaceae, Female, Hospitalization, Humans, Immunoassay, Male, Middle Aged, Pneumonia, Bacterial, Pneumonia, Viral, Polymerase Chain Reaction, Prospective Studies, ROC Curve, Sensitivity and Specificity, Viruses
Show Abstract · Added July 27, 2018
Background - Recent trials suggest procalcitonin-based guidelines can reduce antibiotic use for respiratory infections. However, the accuracy of procalcitonin to discriminate between viral and bacterial pneumonia requires further dissection.
Methods - We evaluated the association between serum procalcitonin concentration at hospital admission with pathogens detected in a multicenter prospective surveillance study of adults hospitalized with community-acquired pneumonia. Systematic pathogen testing included cultures, serology, urine antigen tests, and molecular detection. Accuracy of procalcitonin to discriminate between viral and bacterial pathogens was calculated.
Results - Among 1735 patients, pathogens were identified in 645 (37%), including 169 (10%) with typical bacteria, 67 (4%) with atypical bacteria, and 409 (24%) with viruses only. Median procalcitonin concentration was lower with viral pathogens (0.09 ng/mL; interquartile range [IQR], <0.05-0.54 ng/mL) than atypical bacteria (0.20 ng/mL; IQR, <0.05-0.87 ng/mL; P = .05), and typical bacteria (2.5 ng/mL; IQR, 0.29-12.2 ng/mL; P < .01). Procalcitonin discriminated bacterial pathogens, including typical and atypical bacteria, from viral pathogens with an area under the receiver operating characteristic (ROC) curve of 0.73 (95% confidence interval [CI], .69-.77). A procalcitonin threshold of 0.1 ng/mL resulted in 80.9% (95% CI, 75.3%-85.7%) sensitivity and 51.6% (95% CI, 46.6%-56.5%) specificity for identification of any bacterial pathogen. Procalcitonin discriminated between typical bacteria and the combined group of viruses and atypical bacteria with an area under the ROC curve of 0.79 (95% CI, .75-.82).
Conclusions - No procalcitonin threshold perfectly discriminated between viral and bacterial pathogens, but higher procalcitonin strongly correlated with increased probability of bacterial pathogens, particularly typical bacteria.
© The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
MeSH Terms
OSBPL10, RXRA and lipid metabolism confer African-ancestry protection against dengue haemorrhagic fever in admixed Cubans.
Sierra B, Triska P, Soares P, Garcia G, Perez AB, Aguirre E, Oliveira M, Cavadas B, Regnault B, Alvarez M, Ruiz D, Samuels DC, Sakuntabhai A, Pereira L, Guzman MG
(2017) PLoS Pathog 13: e1006220
MeSH Terms: African Continental Ancestry Group, Cuba, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, Lipid Metabolism, Oligonucleotide Array Sequence Analysis, Polymerase Chain Reaction, Polymorphism, Single Nucleotide, Receptors, Steroid, Retinoid X Receptor alpha, Severe Dengue
Show Abstract · Added March 21, 2018
Ethnic groups can display differential genetic susceptibility to infectious diseases. The arthropod-born viral dengue disease is one such disease, with empirical and limited genetic evidence showing that African ancestry may be protective against the haemorrhagic phenotype. Global ancestry analysis based on high-throughput genotyping in admixed populations can be used to test this hypothesis, while admixture mapping can map candidate protective genes. A Cuban dengue fever cohort was genotyped using a 2.5 million SNP chip. Global ancestry was ascertained through ADMIXTURE and used in a fine-matched corrected association study, while local ancestry was inferred by the RFMix algorithm. The expression of candidate genes was evaluated by RT-PCR in a Cuban dengue patient cohort and gene set enrichment analysis was performed in a Thai dengue transcriptome. OSBPL10 and RXRA candidate genes were identified, with most significant SNPs placed in inferred weak enhancers, promoters and lncRNAs. OSBPL10 had significantly lower expression in Africans than Europeans, while for RXRA several SNPs may differentially regulate its transcription between Africans and Europeans. Their expression was confirmed to change through dengue disease progression in Cuban patients and to vary with disease severity in a Thai transcriptome dataset. These genes interact in the LXR/RXR activation pathway that integrates lipid metabolism and immune functions, being a key player in dengue virus entrance into cells, its replication therein and in cytokine production. Knockdown of OSBPL10 expression in THP-1 cells by two shRNAs followed by DENV2 infection tests led to a significant reduction in DENV replication, being a direct functional proof that the lower OSBPL10 expression profile in Africans protects this ancestry against dengue disease.
0 Communities
1 Members
0 Resources
13 MeSH Terms