Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1121

Publication Record

Connections

The peroxisome proliferator-activated receptor-β/δ antagonist GSK0660 mitigates retinal cell inflammation and leukostasis.
Capozzi ME, Savage SR, McCollum GW, Hammer SS, Ramos CJ, Yang R, Bretz CA, Penn JS
(2020) Exp Eye Res 190: 107885
MeSH Terms: Adult, Animals, Cells, Cultured, Cytokines, Endothelial Cells, Ependymoglial Cells, Humans, Inflammation, Leukostasis, Male, Mice, Mice, Inbred C57BL, PPAR delta, PPAR-beta, Palmitic Acids, Real-Time Polymerase Chain Reaction, Retina, Retinitis, Sulfones, Thiophenes
Show Abstract · Added March 30, 2020
Diabetic retinopathy (DR) is triggered by retinal cell damage stimulated by the diabetic milieu, including increased levels of intraocular free fatty acids. Free fatty acids may serve as an initiator of inflammatory cytokine release from Müller cells, and the resulting cytokines are potent stimulators of retinal endothelial pathology, such as leukostasis, vascular permeability, and basement membrane thickening. Our previous studies have elucidated a role for peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in promoting several steps in the pathologic cascade in DR, including angiogenesis and expression of inflammatory mediators. Furthermore, PPARβ/δ is a known target of lipid signaling, suggesting a potential role for this transcription factor in fatty acid-induced retinal inflammation. Therefore, we hypothesized that PPARβ/δ stimulates both the induction of inflammatory mediators by Müller cells as well the paracrine induction of leukostasis in endothelial cells (EC) by Müller cell inflammatory products. To test this, we used the PPARβ/δ inhibitor, GSK0660, in primary human Müller cells (HMC), human retinal microvascular endothelial cells (HRMEC) and mouse retina. We found that palmitic acid (PA) activation of PPARβ/δ in HMC leads to the production of pro-angiogenic and/or inflammatory cytokines that may constitute DR-relevant upstream paracrine inflammatory signals to EC and other retinal cells. Downstream, EC transduce these signals and increase their synthesis and release of chemokines such as CCL8 and CXCL10 that regulate leukostasis and other cellular events related to vascular inflammation in DR. Our results indicate that PPARβ/δ inhibition mitigates these upstream (MC) as well as downstream (EC) inflammatory signaling events elicited by metabolic stimuli and inflammatory cytokines. Therefore, our data suggest that PPARβ/δ inhibition is a potential therapeutic strategy against early DR pathology.
Copyright © 2019 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Central EP3 (E Prostanoid 3) Receptors Mediate Salt-Sensitive Hypertension and Immune Activation.
Xiao L, Itani HA, do Carmo LS, Carver LS, Breyer RM, Harrison DG
(2019) Hypertension 74: 1507-1515
MeSH Terms: Adaptive Immunity, Analysis of Variance, Animals, Biomarkers, Biopsy, Needle, Brain, Dinoprostone, Disease Models, Animal, Female, Flow Cytometry, Hypertension, Immunohistochemistry, Male, Mice, Mice, Inbred C57BL, NG-Nitroarginine Methyl Ester, Random Allocation, Real-Time Polymerase Chain Reaction, Receptors, Prostaglandin E, EP3 Subtype, Sodium, Dietary
Show Abstract · Added December 3, 2019
We recently identified a pathway underlying immune activation in hypertension. Proteins oxidatively modified by reactive isoLG (isolevuglandin) accumulate in dendritic cells (DCs). PGE (Prostaglandin E2) has been implicated in the inflammation associated with hypertension. We hypothesized that PGE via its EP (E prostanoid) 3 receptor contributes to DC activation in hypertension. EP3 mice and wild-type littermates were exposed to sequential hypertensive stimuli involving an initial 2-week exposure to the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester hydrochloride in drinking water, followed by a 2-week washout period, and a subsequent 4% high-salt diet for 3 weeks. In wild-type mice, this protocol increased systolic pressure from 123±2 to 148±8 mm Hg (<0.05). This was associated with marked renal inflammation and a striking accumulation of isoLG adducts in splenic DCs. However, the increases in blood pressure, renal T-cell infiltration, and DC isoLG formation were completely prevented in EP3 mice. Similar protective effects were also observed in wild-type mice that received intracerebroventricular injection of a lentiviral vector encoding shRNA targeting the EP3 receptor. Further, in vitro experiments indicated that PGE also acts directly on DCs via its EP1 receptors to stimulate intracellular isoLG formation. Together, these findings provide new insight into how EP receptors in both the central nervous system and peripherally on DCs promote inflammation in salt-induced hypertension.
1 Communities
0 Members
0 Resources
20 MeSH Terms
Mitochondrial DNA Haplogroups and Delirium During Sepsis.
Samuels DC, Hulgan T, Fessel JP, Billings FT, Thompson JL, Chandrasekhar R, Girard TD
(2019) Crit Care Med 47: 1065-1071
MeSH Terms: Adult, African Americans, Critical Illness, DNA, Mitochondrial, European Continental Ancestry Group, Female, Haplotypes, Humans, Male, Middle Aged, Polymerase Chain Reaction, Retrospective Studies, Sepsis-Associated Encephalopathy, Sequence Analysis, DNA
Show Abstract · Added December 11, 2019
OBJECTIVES - Studies suggest that mitochondrial dysfunction underlies some forms of sepsis-induced organ failure. We sought to test the hypothesis that variations in mitochondrial DNA haplogroup affect susceptibility to sepsis-associated delirium, a common manifestation of acute brain dysfunction during sepsis.
DESIGN - Retrospective cohort study.
SETTING - Medical and surgical ICUs at a large tertiary care center.
PATIENTS - Caucasian and African American adults with sepsis.
MEASUREMENTS AND MAIN RESULTS - We determined each patient's mitochondrial DNA haplogroup using single-nucleotide polymorphisms genotyping data in a DNA databank and extracted outcomes from linked electronic medical records. We then used zero-inflated negative binomial regression to analyze age-adjusted associations between mitochondrial DNA haplogroups and duration of delirium, identified using the Confusion Assessment Method for the ICU. Eight-hundred ten patients accounted for 958 sepsis admissions, with 802 (84%) by Caucasians and 156 (16%) by African Americans. In total, 795 patient admissions (83%) involved one or more days of delirium. The 7% of Caucasians belonging to mitochondrial DNA haplogroup clade IWX experienced more delirium than the 49% in haplogroup H, the most common Caucasian haplogroup (age-adjusted rate ratio for delirium 1.36; 95% CI, 1.13-1.64; p = 0.001). Alternatively, among African Americans the 24% in haplogroup L2 experienced less delirium than those in haplogroup L3, the most common African haplogroup (adjusted rate ratio for delirium 0.60; 95% CI, 0.38-0.94; p = 0.03).
CONCLUSIONS - Variations in mitochondrial DNA are associated with development of and protection from delirium in Caucasians and African Americans during sepsis. Future studies are now required to determine whether mitochondrial DNA and mitochondrial dysfunction contribute to the pathogenesis of delirium during sepsis so that targeted treatments can be developed.
0 Communities
1 Members
0 Resources
14 MeSH Terms
A Rapid Allele-Specific Assay for HLA-A*32:01 to Identify Patients at Risk for Vancomycin-Induced Drug Reaction with Eosinophilia and Systemic Symptoms.
Rwandamuriye FX, Chopra A, Konvinse KC, Choo L, Trubiano JA, Shaffer CM, Watson M, Mallal SA, Phillips EJ
(2019) J Mol Diagn 21: 782-789
MeSH Terms: Alleles, Anti-Bacterial Agents, Base Sequence, Drug Hypersensitivity Syndrome, Eosinophilia, Genetic Testing, HLA-A Antigens, Humans, Polymerase Chain Reaction, Sequence Homology, Vancomycin
Show Abstract · Added March 30, 2020
Human leukocyte antigen (HLA) alleles have been implicated as risk factors for immune-mediated adverse drug reactions. The authors recently reported a strong association between HLA-A*32:01 and vancomycin-induced drug reaction with eosinophilia and systemic symptoms. Identification of individuals with the risk allele before or shortly after the initiation of vancomycin therapy is of great clinical importance to prevent morbidity and mortality, and improve drug safety and antibiotic treatment options. A prerequisite to the success of pharmacogenetic screening tests is the development of simple, robust, cost-effective single HLA allele test that can be implemented in routine diagnostic laboratories. In this study, the authors developed a simple, real-time allele-specific PCR for typing the HLA-A*32:01 allele. Four-hundred and fifty-eight DNA samples including 30 HLA-A*32:01-positive samples were typed by allele-specific PCR. Compared with American Society for Histocompatibility and Immunogenetics-accredited, sequence-based, high-resolution, full-allelic HLA typing, this assay demonstrates 100% accuracy, 100% sensitivity (95% CI, 88.43% to 100%), and 100% specificity (95% CI, 99.14% to 100%). The lowest limit of detection of this assay using PowerUp SYBR Green is 10 ng of template DNA. The assay demonstrates a sensitivity and specificity to differentiate the HLA-A*32:01 allele from closely related non-HLA-A*32 alleles and may be used in clinical settings to identify individuals with the risk allele before or during the course of vancomycin therapy.
Copyright © 2019 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Myocardial differentiation is dependent upon endocardial signaling during early cardiogenesis .
Saint-Jean L, Barkas N, Harmelink C, Tompkins KL, Oakey RJ, Baldwin HS
(2019) Development 146:
MeSH Terms: Animals, Cell Differentiation, Endocardium, Female, Flow Cytometry, Male, Mice, Mice, Inbred C57BL, Microscopy, Fluorescence, Myocardium, NFATC Transcription Factors, Organogenesis, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction
Show Abstract · Added November 25, 2019
The endocardium interacts with the myocardium to promote proliferation and morphogenesis during the later stages of heart development. However, the role of the endocardium in early cardiac ontogeny remains under-explored. Given the shared origin, subsequent juxtaposition, and essential cell-cell interactions of endocardial and myocardial cells throughout heart development, we hypothesized that paracrine signaling from the endocardium to the myocardium is crucial for initiating early differentiation of myocardial cells. To test this, we generated an , endocardial-specific ablation model using the diphtheria toxin receptor under the regulatory elements of the genomic locus (). Early treatment of mouse embryoid bodies with diphtheria toxin efficiently ablated endocardial cells, which significantly attenuated the percentage of beating EBs in culture and expression of early and late myocardial differentiation markers. The addition of Bmp2 during endocardial ablation partially rescued myocyte differentiation, maturation and function. Therefore, we conclude that early stages of myocardial differentiation rely on endocardial paracrine signaling mediated in part by Bmp2. Our findings provide novel insight into early endocardial-myocardial interactions that can be explored to promote early myocardial development and growth.
© 2019. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Pathologic Fibroblasts in Idiopathic Subglottic Stenosis Amplify Local Inflammatory Signals.
Morrison RJ, Katsantonis NG, Motz KM, Hillel AT, Garrett CG, Netterville JL, Wootten CT, Majka SM, Blackwell TS, Drake WP, Gelbard A
(2019) Otolaryngol Head Neck Surg 160: 107-115
MeSH Terms: Biopsy, Needle, Case-Control Studies, Cell Proliferation, Cells, Cultured, Cicatrix, Cytokines, Enzyme-Linked Immunosorbent Assay, Female, Fibroblasts, Fibrosis, Flow Cytometry, Humans, Immunohistochemistry, Interleukin-17, Laryngostenosis, Male, Polymerase Chain Reaction, Reference Values, Sensitivity and Specificity, Signal Transduction
Show Abstract · Added July 30, 2020
OBJECTIVE - To characterize the phenotype and function of fibroblasts derived from airway scar in idiopathic subglottic stenosis (iSGS) and to explore scar fibroblast response to interleukin 17A (IL-17A).
STUDY DESIGN - Basic science.
SETTING - Laboratory.
SUBJECTS AND METHODS - Primary fibroblast cell lines from iSGS subjects, idiopathic pulmonary fibrosis subjects, and normal control airways were utilized for analysis. Protein, molecular, and flow cytometric techniques were applied in vitro to assess the phenotype and functional response of disease fibroblasts to IL-17A.
RESULTS - Mechanistically, IL-17A drives iSGS scar fibroblast proliferation ( P < .01), synergizes with transforming growth factor ß1 to promote extracellular matrix production (collagen and fibronectin; P = .04), and directly stimulates scar fibroblasts to produce chemokines (chemokine ligand 2) and cytokines (IL-6 and granulocyte-macrophage colony-stimulating factor) critical to the recruitment and differentiation of myeloid cells ( P < .01). Glucocorticoids abrogated IL-17A-dependent iSGS scar fibroblast production of granulocyte-macrophage colony-stimulating factor ( P = .02).
CONCLUSION - IL-17A directly drives iSGS scar fibroblast proliferation, synergizes with transforming growth factor ß1 to promote extracellular matrix production, and amplifies local inflammatory signaling. Glucocorticoids appear to partially abrogate fibroblast-dependent inflammatory signaling. These results offer mechanistic support for future translational study of clinical reagents for manipulation of the IL-17A pathway in iSGS patients.
0 Communities
1 Members
0 Resources
MeSH Terms
Molecular and epidemiologic characterization of Wilms tumor from Baghdad, Iraq.
Phelps HM, Al-Jadiry MF, Corbitt NM, Pierce JM, Li B, Wei Q, Flores RR, Correa H, Uccini S, Frangoul H, Alsaadawi AR, Al-Badri SAF, Al-Darraji AF, Al-Saeed RM, Al-Hadad SA, Lovvorn Iii HN
(2018) World J Pediatr 14: 585-593
MeSH Terms: Adaptor Proteins, Signal Transducing, Child, Preschool, DNA Topoisomerases, Type II, Female, Homeodomain Proteins, Humans, Immunohistochemistry, Infant, Insulin-Like Growth Factor II, Iraq, Kidney Neoplasms, Male, Multiplex Polymerase Chain Reaction, Mutation, N-Myc Proto-Oncogene Protein, Nerve Tissue Proteins, Neural Cell Adhesion Molecules, Nuclear Proteins, Poly-ADP-Ribose Binding Proteins, Receptors, Retinoic Acid, Sequence Analysis, DNA, Transcription Factors, Tumor Suppressor Protein p53, Tumor Suppressor Proteins, WT1 Proteins, Wilms Tumor, beta Catenin
Show Abstract · Added January 28, 2019
BACKGROUND - Wilms tumor (WT) is the most common childhood kidney cancer worldwide, yet its incidence and clinical behavior vary according to race and access to adequate healthcare resources. To guide and streamline therapy in the war-torn and resource-constrained city of Baghdad, Iraq, we conducted a first-ever molecular analysis of 20 WT specimens to characterize the biological features of this lethal disease within this challenged population.
METHODS - Next-generation sequencing of ten target genes associated with WT development and treatment resistance (WT1, CTNNB1, WTX, IGF2, CITED1, SIX2, p53, N-MYC, CRABP2, and TOP2A) was completed. Immunohistochemistry was performed for 6 marker proteins of WT (WT1, CTNNB1, NCAM, CITED1, SIX2, and p53). Patient outcomes were compiled.
RESULTS - Mutations were detected in previously described WT "hot spots" (e.g., WT1 and CTNNB1) as well as novel loci that may be unique to the Iraqi population. Immunohistochemistry showed expression domains most typical of blastemal-predominant WT. Remarkably, despite the challenges facing families and care providers, only one child, with combined WT1 and CTNNB1 mutations, was confirmed dead from disease. Median clinical follow-up was 40.5 months (range 6-78 months).
CONCLUSIONS - These data suggest that WT biology within a population of Iraqi children manifests features both similar to and unique from disease variants in other regions of the world. These observations will help to risk stratify WT patients living in this difficult environment to more or less intensive therapies and to focus treatment on cell-specific targets.
0 Communities
1 Members
0 Resources
27 MeSH Terms
Integration Mapping of piggyBac-Mediated CD19 Chimeric Antigen Receptor T Cells Analyzed by Novel Tagmentation-Assisted PCR.
Hamada M, Nishio N, Okuno Y, Suzuki S, Kawashima N, Muramatsu H, Tsubota S, Wilson MH, Morita D, Kataoka S, Ichikawa D, Murakami N, Taniguchi R, Suzuki K, Kojima D, Sekiya Y, Nishikawa E, Narita A, Hama A, Kojima S, Nakazawa Y, Takahashi Y
(2018) EBioMedicine 34: 18-26
MeSH Terms: DNA Transposable Elements, High-Throughput Nucleotide Sequencing, Humans, Lentivirus, Polymerase Chain Reaction, Receptors, Antigen, T-Cell, Retroviridae, T-Lymphocytes
Show Abstract · Added December 13, 2018
Insertional mutagenesis is an important risk with all genetically modified cell therapies, including chimeric antigen receptor (CAR)-T cell therapy used for hematological malignancies. Here we describe a new tagmentation-assisted PCR (tag-PCR) system that can determine the integration sites of transgenes without using restriction enzyme digestion (which can potentially bias the detection) and allows library preparation in fewer steps than with other methods. Using this system, we compared the integration sites of CD19-specific CAR genes in final T cell products generated by retrovirus-based and lentivirus-based gene transfer and by the piggyBac transposon system. The piggyBac system demonstrated lower preference than the retroviral system for integration near transcriptional start sites and CpG islands and higher preference than the lentiviral system for integration into genomic safe harbors. Integration into or near proto-oncogenes was similar in all three systems. Tag-PCR mapping is a useful technique for assessing the risk of insertional mutagenesis.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.
Shelton EL, Waleh N, Plosa EJ, Benjamin JT, Milne GL, Hooper CW, Ehinger NJ, Poole S, Brown N, Seidner S, McCurnin D, Reese J, Clyman RI
(2018) Pediatr Res 84: 458-465
MeSH Terms: Animals, Betamethasone, Ductus Arteriosus, Ductus Arteriosus, Patent, Echocardiography, Female, Gene Expression Profiling, Gene Expression Regulation, Humans, Infant, Premature, Maternal Exposure, Mice, Oxygen, Papio, Polymerase Chain Reaction, Prostaglandins
Show Abstract · Added November 26, 2018
BACKGROUND - Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.
METHODS - We used preterm baboons, mice, and humans (≤27 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.
RESULTS - In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤25 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.
CONCLUSIONS - We speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth.
0 Communities
3 Members
0 Resources
16 MeSH Terms
Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space.
Veri AO, Miao Z, Shapiro RS, Tebbji F, O'Meara TR, Kim SH, Colazo J, Tan K, Vyas VK, Whiteway M, Robbins N, Wong KH, Cowen LE
(2018) PLoS Genet 14: e1007270
MeSH Terms: Blotting, Western, Candida albicans, Chromatin Immunoprecipitation, Genes, Fungal, HSP90 Heat-Shock Proteins, Heat Shock Transcription Factors, Morphogenesis, Oligonucleotide Array Sequence Analysis, Reverse Transcriptase Polymerase Chain Reaction, Sequence Analysis, RNA, Temperature, Virulence
Show Abstract · Added November 7, 2019
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.
0 Communities
1 Members
0 Resources
MeSH Terms