Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 4 of 4

Publication Record

Connections

Poly(glycidol) Coating on Ultrahigh Molecular Weight Polyethylene for Reduced Biofilm Growth.
Lockhart JN, Spoonmore TJ, McCurdy MW, Rogers BR, Guelcher SA, Harth E
(2018) ACS Appl Mater Interfaces 10: 4050-4056
MeSH Terms: Biofilms, Coated Materials, Biocompatible, Molecular Weight, Polyethylenes, Propylene Glycols, Staphylococcus aureus
Show Abstract · Added March 25, 2018
Semibranched poly(glycidol) (PG-OH) and poly(glycidol allylglycidyl ether) (PG-Allyl) coatings were formed on ultrahigh molecular weight polyethylene (UMWPE) in a unique two-step process which included radiation of UHMWPE followed by grafting of PG-OH or PG-Allyl to the surface via free radical cross-linking. Resulting surfaces were extensively characterized by FTIR-ATR, XPS, fluorescent microscopy, and contact goniometry. The performance was evaluated using the most prominent biofilm-forming bacteria Staphylococcus aureus for 24 and 48 h. The PG-Allyl coating demonstrated a 3 log reduction in biofilm growth compared to noncoated control, demonstrating a promising potential to inhibit adherence and colonization of biofilm-forming bacteria that often develop into persistent infections.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Pro-angiogenic and anti-inflammatory regulation by functional peptides loaded in polymeric implants for soft tissue regeneration.
Zachman AL, Crowder SW, Ortiz O, Zienkiewicz KJ, Bronikowski CM, Yu SS, Giorgio TD, Guelcher SA, Kohn J, Sung HJ
(2013) Tissue Eng Part A 19: 437-47
MeSH Terms: Angiogenic Proteins, Animals, Anti-Inflammatory Agents, Drug Implants, Equipment Design, Guided Tissue Regeneration, Laminin, Mice, Peptides, Polyethylenes, Regeneration, Soft Tissue Infections, Thymosin, Tissue Scaffolds, Treatment Outcome
Show Abstract · Added September 24, 2012
Inflammation and angiogenesis are inevitable in vivo responses to biomaterial implants. Continuous progress has been made in biomaterial design to improve tissue interactions with an implant by either reducing inflammation or promoting angiogenesis. However, it has become increasingly clear that the physiological processes of inflammation and angiogenesis are interconnected through various molecular mechanisms. Hence, there is an unmet need for engineering functional tissues by simultaneous activation of pro-angiogenic and anti-inflammatory responses to biomaterial implants. In this work, the modulus and fibrinogen adsorption of porous scaffolds were tuned to meet the requirements (i.e., ~100 kPa and ~10 nm, respectively), for soft tissue regeneration by employing tyrosine-derived combinatorial polymers with polyethylene glycol crosslinkers. Two types of functional peptides (i.e., pro-angiogenic laminin-derived C16 and anti-inflammatory thymosin β4-derived Ac-SDKP) were loaded in porous scaffolds through collagen gel embedding so that peptides were released in a controlled fashion, mimicking degradation of the extracellular matrix. The results from (1) in vitro coculture of human umbilical vein endothelial cells and human blood-derived macrophages and (2) in vivo subcutaneous implantation revealed the directly proportional relationship between angiogenic activities (i.e., tubulogenesis and perfusion capacity) and inflammatory activities (i.e., phagocytosis and F4/80 expression) upon treatment with either type of peptide. Interestingly, cotreatment with both types of peptides upregulated the angiogenic responses, while downregulating the inflammatory responses. Also, anti-inflammatory Ac-SDKP peptides reduced production of pro-inflammatory cytokines (i.e., interleukin [IL]-1β, IL-6, IL-8, and tumor necrosis factor alpha) even when treated in combination with pro-angiogenic C16 peptides. In addition to independent regulation of angiogenesis and inflammation, this study suggests a promising approach to improve soft tissue regeneration (e.g., blood vessel and heart muscle) when inflammatory diseases (e.g., ischemic tissue fibrosis and atherosclerosis) limit the regeneration process.
2 Communities
4 Members
0 Resources
15 MeSH Terms
Final report of the Amended Safety Assessment of PVM/MA copolymer and its related salts and esters as used in cosmetics.
Burnett CL, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA
(2011) Int J Toxicol 30: 128S-44S
MeSH Terms: Animals, Consumer Product Safety, Cosmetics, Humans, Maleates, Polyethylenes
Show Abstract · Added March 20, 2014
Polyvinyl methyl ether/maleic acid (PVM/MA) copolymer, and its related salts and esters, are used in cosmetics, mainly as binders, film formers, and hair fixatives. Animal and human data relevant to the use of these ingredients in cosmetic products were reviewed by the CIR Expert Panel. The Panel concluded that these ingredients are safe for use in cosmetic products.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry.
Chaurand P, Caprioli RM
(2002) Electrophoresis 23: 3125-35
MeSH Terms: Animals, Dissection, Epididymis, Humans, Lasers, Male, Membranes, Artificial, Mice, Microtomy, Peptides, Polyethylenes, Protein Array Analysis, Proteins, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Tissue Distribution
Show Abstract · Added March 5, 2014
Mass spectrometry can be used to map the distribution of targeted compounds in tissue, providing important molecular information in many areas of biological research. Matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS) is well suited for the analysis of tissue samples with a spatial resolution of about 30 microm for compounds in a mass range from 1000 to over 50 000 Da. Direct analysis of tissue sections requires spotting or coating of the tissue with a matrix compound typically sinapinic acid or other cinnamic acid analogs. A raster of this sample by the laser beam and subsequent mass analysis of the desorbed ions can record molecular intensities throughout the section. The overall process is illustrated by profiling and imaging of mouse epididymis sections where protein activity changes markedly throughout the section.
0 Communities
1 Members
0 Resources
15 MeSH Terms