Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 52

Publication Record

Connections

Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development.
Kim YK, Refaeli I, Brooks CR, Jing P, Gulieva RE, Hughes MR, Cruz NM, Liu Y, Churchill AJ, Wang Y, Fu H, Pippin JW, Lin LY, Shankland SJ, Vogl AW, McNagny KM, Freedman BS
(2017) Stem Cells 35: 2366-2378
MeSH Terms: Animals, Cell Adhesion, Cell Differentiation, Gene Editing, Humans, Kidney, Kidney Glomerulus, Mice, Organoids, Pluripotent Stem Cells, Podocytes, Sialoglycoproteins
Show Abstract · Added March 14, 2019
A critical event during kidney organogenesis is the differentiation of podocytes, specialized epithelial cells that filter blood plasma to form urine. Podocytes derived from human pluripotent stem cells (hPSC-podocytes) have recently been generated in nephron-like kidney organoids, but the developmental stage of these cells and their capacity to reveal disease mechanisms remains unclear. Here, we show that hPSC-podocytes phenocopy mammalian podocytes at the capillary loop stage (CLS), recapitulating key features of ultrastructure, gene expression, and mutant phenotype. hPSC-podocytes in vitro progressively establish junction-rich basal membranes (nephrin podocin ZO-1 ) and microvillus-rich apical membranes (podocalyxin ), similar to CLS podocytes in vivo. Ultrastructural, biophysical, and transcriptomic analysis of podocalyxin-knockout hPSCs and derived podocytes, generated using CRISPR/Cas9, reveals defects in the assembly of microvilli and lateral spaces between developing podocytes, resulting in failed junctional migration. These defects are phenocopied in CLS glomeruli of podocalyxin-deficient mice, which cannot produce urine, thereby demonstrating that podocalyxin has a conserved and essential role in mammalian podocyte maturation. Defining the maturity of hPSC-podocytes and their capacity to reveal and recapitulate pathophysiological mechanisms establishes a powerful framework for studying human kidney disease and regeneration. Stem Cells 2017;35:2366-2378.
© 2017 AlphaMed Press.
0 Communities
1 Members
0 Resources
MeSH Terms
Glypican-5 Increases Susceptibility to Nephrotic Damage in Diabetic Kidney.
Okamoto K, Honda K, Doi K, Ishizu T, Katagiri D, Wada T, Tomita K, Ohtake T, Kaneko T, Kobayashi S, Nangaku M, Tokunaga K, Noiri E
(2015) Am J Pathol 185: 1889-98
MeSH Terms: Adult, Aged, Animals, Cell Line, Diabetes Mellitus, Type 2, Diabetic Nephropathies, Disease Susceptibility, Female, Fibroblast Growth Factor 2, Glomerular Mesangium, Glypicans, Humans, Hyperglycemia, Kidney, Kidney Failure, Chronic, Male, Mesangial Cells, Mice, Mice, Inbred C57BL, Mice, Knockout, Middle Aged, Nephrotic Syndrome, Podocytes, Proteinuria, Rats
Show Abstract · Added February 11, 2016
Type 2 diabetes mellitus is a leading health issue worldwide. Among cases of diabetes mellitus nephropathy (DN), the major complication of type 2 diabetes mellitus, the nephrotic phenotype is often intractable to clinical intervention and demonstrates the rapid decline of renal function to end-stage renal disease. We recently identified the gene for glypican-5 (GPC5), a cell-surface heparan sulfate proteoglycan, as conferring susceptibility for acquired nephrotic syndrome and additionally identified an association through a genome-wide association study between a variant in GPC5 and DN of type 2 diabetes mellitus. In vivo and in vitro data showed a progressive increase of GPC5 in type 2 DN along with severity; the excess was derived from glomerular mesangial cells. In this study, diabetic kidney showed that accumulation of fibroblast growth factor (Fgf)2 strikingly induced progressive proteinuria that was avoided in Gpc5 knockdown mice. The efficacy of Gpc5 inhibition was exerted through expression of the Fgf receptors 3 and 4 provoked in the diabetic kidney attributively. Extraglomerular Fgf2 was pathogenic in DN, and the deterrence of Gpc5 effectively inhibited the glomerular accumulation of Fgf2, the subsequent increase of mesangial extracellular matrix, and the podocytes' small GTPase activity. These findings elucidate the pivotal role of GPC5, identified as a susceptible gene in the genome-wide association study, in hyperglycemia-induced glomerulopathy.
Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
25 MeSH Terms
EGF receptor deletion in podocytes attenuates diabetic nephropathy.
Chen J, Chen JK, Harris RC
(2015) J Am Soc Nephrol 26: 1115-25
MeSH Terms: Albuminuria, Animals, Caspase 3, Diabetic Nephropathies, ErbB Receptors, Hyperglycemia, Male, Mice, Knockout, Podocytes, Proto-Oncogene Proteins c-bcl-2, Reactive Oxygen Species, Signal Transduction, Smad Proteins, Receptor-Regulated, Transforming Growth Factor beta, src-Family Kinases
Show Abstract · Added October 27, 2014
The generation of reactive oxygen species (ROS), particularly superoxide, by damaged or dysfunctional mitochondria has been postulated to be an initiating event in the development of diabetes complications. The glomerulus is a primary site of diabetic injury, and podocyte injury is a classic hallmark of diabetic glomerular lesions. In streptozotocin-induced type 1 diabetes, podocyte-specific EGF receptor (EGFR) knockout mice (EGFR(podKO)) and their wild-type (WT) littermates had similar levels of hyperglycemia and polyuria, but EGFR(podKO) mice had significantly less albuminuria and less podocyte loss compared with WT diabetic mice. Furthermore, EGFR(podKO) diabetic mice had less TGF-β1 expression, Smad2/3 phosphorylation, and glomerular fibronectin deposition. Immunoblotting of isolated glomerular lysates revealed that the upregulation of cleaved caspase 3 and downregulation of Bcl2 in WT diabetic mice were attenuated in EGFR(podKO) diabetic mice. Administration of the SOD mimetic mito-tempol or the NADPH oxidase inhibitor apocynin attenuated the upregulation of p-c-Src, p-EGFR, p-ERK1/2, p-Smad2/3, and TGF-β1 expression and prevented the alteration of cleaved caspase 3 and Bcl2 expression in glomeruli of WT diabetic mice. High-glucose treatment of cultured mouse podocytes induced similar alterations in the production of ROS; phosphorylation of c-Src, EGFR, and Smad2/3; and expression of TGF-β1, cleaved caspase 3, and Bcl2. These alterations were inhibited by treatment with mito-tempol or apocynin or by inhibiting EGFR expression or activity. Thus, results of our studies utilizing mice with podocyte-specific EGFR deletion demonstrate that EGFR activation has a major role in activating pathways that mediate podocyte injury and loss in diabetic nephropathy.
Copyright © 2015 by the American Society of Nephrology.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance.
Tian X, Kim JJ, Monkley SM, Gotoh N, Nandez R, Soda K, Inoue K, Balkin DM, Hassan H, Son SH, Lee Y, Moeckel G, Calderwood DA, Holzman LB, Critchley DR, Zent R, Reiser J, Ishibe S
(2014) J Clin Invest 124: 1098-113
MeSH Terms: Actin Cytoskeleton, Animals, Calpain, Cell Adhesion, Cells, Cultured, Focal Adhesions, Glomerular Filtration Barrier, Humans, Integrin beta1, Mice, Mice, Knockout, Nephrotic Syndrome, Podocytes, Proteinuria, Proteolysis, Renal Insufficiency, Talin
Show Abstract · Added February 25, 2014
Podocytes are specialized actin-rich epithelial cells that line the kidney glomerular filtration barrier. The interface between the podocyte and the glomerular basement membrane requires integrins, and defects in either α3 or β1 integrin, or the α3β1 ligand laminin result in nephrotic syndrome in murine models. The large cytoskeletal protein talin1 is not only pivotal for integrin activation, but also directly links integrins to the actin cytoskeleton. Here, we found that mice lacking talin1 specifically in podocytes display severe proteinuria, foot process effacement, and kidney failure. Loss of talin1 in podocytes caused only a modest reduction in β1 integrin activation, podocyte cell adhesion, and cell spreading; however, the actin cytoskeleton of podocytes was profoundly altered by the loss of talin1. Evaluation of murine models of glomerular injury and patients with nephrotic syndrome revealed that calpain-induced talin1 cleavage in podocytes might promote pathogenesis of nephrotic syndrome. Furthermore, pharmacologic inhibition of calpain activity following glomerular injury substantially reduced talin1 cleavage, albuminuria, and foot process effacement. Collectively, these findings indicate that podocyte talin1 is critical for maintaining the integrity of the glomerular filtration barrier and provide insight into the pathogenesis of nephrotic syndrome.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Glomerular cell cross-talk influences composition and assembly of extracellular matrix.
Byron A, Randles MJ, Humphries JD, Mironov A, Hamidi H, Harris S, Mathieson PW, Saleem MA, Satchell SC, Zent R, Humphries MJ, Lennon R
(2014) J Am Soc Nephrol 25: 953-66
MeSH Terms: Cells, Cultured, Coculture Techniques, Culture Media, Conditioned, Extracellular Matrix, Extracellular Matrix Proteins, Humans, Kidney Glomerulus, Phenotype, Podocytes, Protein Interaction Maps, Receptor Cross-Talk
Show Abstract · Added February 25, 2014
The glomerular basement membrane (GBM) is a specialized extracellular matrix (ECM) compartment within the glomerulus that contains tissue-restricted isoforms of collagen IV and laminin. It is integral to the capillary wall and therefore, functionally linked to glomerular filtration. Although the composition of the GBM has been investigated with global and candidate-based approaches, the relative contributions of glomerular cell types to the production of ECM are not well understood. To characterize specific cellular contributions to the GBM, we used mass spectrometry-based proteomics to analyze ECM isolated from podocytes and glomerular endothelial cells in vitro. These analyses identified cell type-specific differences in ECM composition, indicating distinct contributions to glomerular ECM assembly. Coculture of podocytes and endothelial cells resulted in an altered composition and organization of ECM compared with monoculture ECMs, and electron microscopy revealed basement membrane-like ECM deposition between cocultured cells, suggesting the involvement of cell-cell cross-talk in the production of glomerular ECM. Notably, compared with monoculture ECM proteomes, the coculture ECM proteome better resembled a tissue-derived glomerular ECM dataset, indicating its relevance to GBM in vivo. Protein network analyses revealed a common core of 35 highly connected structural ECM proteins that may be important for glomerular ECM assembly. Overall, these findings show the complexity of the glomerular ECM and suggest that both ECM composition and organization are context-dependent.
Copyright © 2014 by the American Society of Nephrology.
1 Communities
1 Members
0 Resources
11 MeSH Terms
mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking.
Chen J, Chen MX, Fogo AB, Harris RC, Chen JK
(2013) J Am Soc Nephrol 24: 198-207
MeSH Terms: Animals, Autophagy, Class III Phosphatidylinositol 3-Kinases, Cytoplasmic Vesicles, Female, Gene Deletion, Glomerulosclerosis, Focal Segmental, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Microscopy, Electron, Podocytes, Protein Transport, Proteinuria, TOR Serine-Threonine Kinases
Show Abstract · Added August 19, 2013
Recent studies have suggested that autophagy is a key mechanism in maintaining the integrity of podocytes. The mammalian homologue of yeast vacuolar protein sorting defective 34 (mVps34) has been implicated in the regulation of autophagy, but its role in podocytes is unknown. We generated a line of podocyte-specific mVps34-knockout (mVps34(pdKO)) mice, which were born at Mendelian ratios. These mice appeared grossly normal at 2 weeks of age but exhibited growth retardation and were significantly smaller than control mice by 6 weeks of age, with no difference in ratios of kidney to body weight. mVps34(pdKO) mice developed significant proteinuria by 3 weeks of age, developed severe kidney lesions by 5-6 weeks of age, and died before 9 weeks of age. There was striking podocyte vacuolization and proteinaceous casts, with marked glomerulosclerosis and interstitial fibrosis by 6 weeks of age. Electron microscopy revealed numerous enlarged vacuoles and increased autophagosomes in the podocytes, with complete foot process effacement and irregular and thickened glomerular basement membranes. Immunoblotting of isolated glomerular lysates revealed markedly elevated markers specific for lysosomes (LAMP1 and LAMP2) and autophagosomes (LC3-II/I). Immunofluorescence staining confirmed that the enlarged vacuoles originated from lysosomes. In conclusion, these results demonstrate an indispensable role for mVps34 in the trafficking of intracellular vesicles to protect the normal cellular metabolism, structure, and function of podocytes.
2 Communities
1 Members
0 Resources
16 MeSH Terms
Upregulated expression of integrin α1 in mesangial cells and integrin α3 and vimentin in podocytes of Col4a3-null (Alport) mice.
Steenhard BM, Vanacore R, Friedman D, Zelenchuk A, Stroganova L, Isom K, St John PL, Hudson BG, Abrahamson DR
(2012) PLoS One 7: e50745
MeSH Terms: Animals, Autoantigens, Collagen Type IV, Disease Models, Animal, Glomerular Basement Membrane, Integrin alpha1, Integrin alpha3, Mesangial Cells, Mice, Mice, Knockout, Nephritis, Hereditary, Podocytes, Up-Regulation, Vimentin
Show Abstract · Added August 21, 2013
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM.
1 Communities
2 Members
0 Resources
14 MeSH Terms
eNOS deficiency predisposes podocytes to injury in diabetes.
Yuen DA, Stead BE, Zhang Y, White KE, Kabir MG, Thai K, Advani SL, Connelly KA, Takano T, Zhu L, Cox AJ, Kelly DJ, Gibson IW, Takahashi T, Harris RC, Advani A
(2012) J Am Soc Nephrol 23: 1810-23
MeSH Terms: Albuminuria, Angiotensin-Converting Enzyme Inhibitors, Animals, Capillaries, Diabetes Mellitus, Experimental, Diabetic Nephropathies, Disease Models, Animal, Glucose, Humans, Kidney Glomerulus, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Nitric Oxide Synthase Type III, Podocytes, Renin-Angiotensin System, Vascular Endothelial Growth Factor Receptor-2, rho GTP-Binding Proteins
Show Abstract · Added January 28, 2014
Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS(-/-) mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS(-/-) mice, even though it inhibited glomerular capillary enlargement in both. In eNOS(-/-) mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS(-/-) mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS(-/-) glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes.
1 Communities
1 Members
0 Resources
19 MeSH Terms
Mammalian target of rapamycin inhibitors in organ transplantation: an unkept promise.
Langone AJ, Helderman JH
(2012) Chest 142: 734-737
MeSH Terms: Anemia, Enzyme Inhibitors, Humans, Hyperlipidemias, Immunosuppressive Agents, Organ Transplantation, Podocytes, Proteinuria, Risk Factors, TOR Serine-Threonine Kinases, Thrombocytopenia
Show Abstract · Added March 4, 2014
The initial enthusiasm for the advent of a potentially nonnephrotoxic immunosuppressant has been muted by data unmasking nephrotoxicity of mammalian target of rapamycin inhibitors, including renal podocyte injury resulting in proteinuria. Adverse reactions, including anemia, thrombocytopenia, hyperlipidemia, and especially diabetogenesis, have limited its use to niche indications such as prevention or amelioration of malignancy in organ transplant. The class seems to be best used to address malignancy in organ allograft recipients and as a first-line therapy in lymphangioleiomyomatosis.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Podocyte ACE2 protects against diabetic nephropathy.
Harris RC
(2012) Kidney Int 82: 255-6
MeSH Terms: Animals, Diabetic Nephropathies, Humans, Male, Peptidyl-Dipeptidase A, Podocytes
Show Abstract · Added August 19, 2013
As new components of the renin-angiotensin system (RAS) are elucidated, our understanding of the complexities of their interactions also advances. Previous studies have determined that podocytes possess a local RAS that can generate angiotensin II. Podocytes have also been shown to express angiotensin-converting enzyme 2 (ACE2), which can decrease angiotensin II levels by generation of angiotensin-(1-7). Nadarajah et al. now show that increased podocyte ACE2 activity can attenuate the development of diabetic nephropathy.
1 Communities
1 Members
0 Resources
6 MeSH Terms