, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 34

Publication Record

Connections

Two-week administration of engineered Escherichia coli establishes persistent resistance to diet-induced obesity even without antibiotic pre-treatment.
Dosoky NS, Chen Z, Guo Y, McMillan C, Flynn CR, Davies SS
(2019) Appl Microbiol Biotechnol 103: 6711-6723
MeSH Terms: Acyltransferases, Animals, Anti-Bacterial Agents, Anti-Obesity Agents, Arabidopsis, Diet, High-Fat, Disease Models, Animal, Escherichia coli, Humans, Metabolic Engineering, Mice, Obesity, Phosphatidylethanolamines, Plant Proteins, Probiotics, Recombinant Proteins, Treatment Outcome
Show Abstract · Added July 17, 2019
Adverse alterations in the composition of the gut microbiota have been implicated in the development of obesity and a variety of chronic diseases. Re-engineering the gut microbiota to produce beneficial metabolites is a potential strategy for treating these chronic diseases. N-acyl-phosphatidylethanolamines (NAPEs) are a family of bioactive lipids with known anti-obesity properties. Previous studies showed that administration of Escherichia coli Nissle 1917 (EcN) engineered with Arabidopsis thaliana NAPE synthase to produce NAPEs imparted resistance to obesity induced by a high-fat diet that persisted after ending their administration. In prior studies, mice were pre-treated with ampicillin prior to administering engineered EcN for 8 weeks in drinking water. If use of antibiotics and long-term administration are required for beneficial effects, implementation of this strategy in humans might be problematic. Studies were therefore undertaken to determine if less onerous protocols could still impart persistent resistance and sustained NAPE biosynthesis. Administration of engineered EcN for only 2 weeks without pre-treatment with antibiotics sufficed to establish persistent resistance. Sustained NAPE biosynthesis by EcN was required as antibiotic treatment after administration of the engineered EcN markedly attenuated its effects. Finally, heterologous expression of human phospholipase A/acyltransferase-2 (PLAAT2) in EcN provided similar resistance to obesity as heterologous expression of A. thaliana NAPE synthase, confirming that NAPEs are the bioactive mediator of this resistance.
1 Communities
2 Members
0 Resources
17 MeSH Terms
Integrating mRNA and Protein Sequencing Enables the Detection and Quantitative Profiling of Natural Protein Sequence Variants of Populus trichocarpa.
Abraham PE, Wang X, Ranjan P, Nookaew I, Zhang B, Tuskan GA, Hettich RL
(2015) J Proteome Res 14: 5318-26
MeSH Terms: Amino Acid Sequence, Amino Acid Substitution, Databases, Protein, Diploidy, Genetic Variation, Molecular Sequence Data, Plant Proteins, Populus, Proteomics, RNA, Messenger, RNA, Plant, Sequence Analysis, Protein, Sequence Analysis, RNA, Sequence Homology, Amino Acid, Tandem Mass Spectrometry
Show Abstract · Added February 15, 2016
Next-generation sequencing has transformed the ability to link genotypes to phenotypes and facilitates the dissection of genetic contribution to complex traits. However, it is challenging to link genetic variants with the perturbed functional effects on proteins encoded by such genes. Here we show how RNA sequencing can be exploited to construct genotype-specific protein sequence databases to assess natural variation in proteins, providing information about the molecular toolbox driving cellular processes. For this study, we used two natural genotypes selected from a recent genome-wide association study of Populus trichocarpa, an obligate outcrosser with tremendous phenotypic variation across the natural population. This strategy allowed us to comprehensively catalogue proteins containing single amino acid polymorphisms (SAAPs), as well as insertions and deletions. We profiled the frequency of 128 types of naturally occurring amino acid substitutions, including both expected (neutral) and unexpected (non-neutral) SAAPs, with a subset occurring in regions of the genome having strong polymorphism patterns consistent with recent positive and/or divergent selection. By zeroing in on the molecular signatures of these important regions that might have previously been uncharacterized, we now provide a high-resolution molecular inventory that should improve accessibility and subsequent identification of natural protein variants in future genotype-to-phenotype studies.
0 Communities
1 Members
0 Resources
15 MeSH Terms
PhDAHP1 is required for floral volatile benzenoid/phenylpropanoid biosynthesis in Petunia × hybrida cv 'Mitchell Diploid'.
Langer KM, Jones CR, Jaworski EA, Rushing GV, Kim JY, Clark DG, Colquhoun TA
(2014) Phytochemistry 103: 22-31
MeSH Terms: Benzene Derivatives, Diploidy, Flowers, Gene Expression Regulation, Plant, Petunia, Plant Proteins, Volatile Organic Compounds
Show Abstract · Added August 14, 2014
Floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis consists of numerous enzymatic and regulatory processes. The initial enzymatic step bridging primary metabolism to secondary metabolism is the condensation of phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) carried out via 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE (DAHP) synthase. Here, identified, cloned, localized, and functionally characterized were two DAHP synthases from the model plant species Petunia × hybrida cv 'Mitchell Diploid' (MD). Full-length transcript sequences for PhDAHP1 and PhDAHP2 were identified and cloned using cDNA SMART libraries constructed from pooled MD corolla and leaf total RNA. Predicted amino acid sequence of PhDAHP1 and PhDAHP2 proteins were 76% and 80% identical to AtDAHP1 and AtDAHP2 from Arabidopsis, respectively. PhDAHP1 transcript accumulated to relatively highest levels in petal limb and tube tissues, while PhDAHP2 accumulated to highest levels in leaf and stem tissues. Through floral development, PhDAHP1 transcript accumulated to highest levels during open flower stages, and PhDAHP2 transcript remained constitutive throughout. Radiolabeled PhDAHP1 and PhDAHP2 proteins localized to plastids, however, PhDAHP2 localization appeared less efficient. PhDAHP1 RNAi knockdown petunia lines were reduced in total FVBP emission compared to MD, while PhDAHP2 RNAi lines emitted 'wildtype' FVBP levels. These results demonstrate that PhDAHP1 is the principal DAHP synthase protein responsible for the coupling of metabolites from primary metabolism to secondary metabolism, and the ultimate biosynthesis of FVBPs in the MD flower.
Copyright © 2014 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Isotopically nonstationary MFA (INST-MFA) of autotrophic metabolism.
Jazmin LJ, O'Grady JP, Ma F, Allen DK, Morgan JA, Young JD
(2014) Methods Mol Biol 1090: 181-210
MeSH Terms: Carbon Dioxide, Carbon Isotopes, Enzyme Assays, Isotope Labeling, Kinetics, Metabolic Flux Analysis, Phosphoenolpyruvate Carboxylase, Photosynthesis, Plant Leaves, Plant Proteins, Plants, Seeds, Starch, Sugar Phosphates, Tandem Mass Spectrometry, Transaminases
Show Abstract · Added January 23, 2015
Metabolic flux analysis (MFA) is a powerful approach for quantifying plant central carbon metabolism based upon a combination of extracellular flux measurements and intracellular isotope labeling measurements. In this chapter, we present the method of isotopically nonstationary (13)C MFA (INST-MFA), which is applicable to autotrophic systems that are at metabolic steady state but are sampled during the transient period prior to achieving isotopic steady state following the introduction of (13)CO2. We describe protocols for performing the necessary isotope labeling experiments, sample collection and quenching, nonaqueous fractionation and extraction of intracellular metabolites, and mass spectrometry (MS) analysis of metabolite labeling. We also outline the steps required to perform computational flux estimation using INST-MFA. By combining several recently developed experimental and computational techniques, INST-MFA provides an important new platform for mapping carbon fluxes that is especially applicable to autotrophic organisms, which are not amenable to steady-state (13)C MFA experiments.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Factor XII promotes blood coagulation independent of factor XI in the presence of long-chain polyphosphates.
Puy C, Tucker EI, Wong ZC, Gailani D, Smith SA, Choi SH, Morrissey JH, Gruber A, McCarty OJ
(2013) J Thromb Haemost 11: 1341-52
MeSH Terms: Animals, Antibodies, Neutralizing, Blood Coagulation, Factor XI, Factor XI Deficiency, Factor XII, Factor XIIa, Factor XIa, Humans, Plant Proteins, Polyphosphates, Prothrombin, Thrombin, Thrombosis, Time Factors
Show Abstract · Added May 19, 2014
BACKGROUND - Inorganic polyphosphates (polyP), which are secreted by activated platelets (short-chain polyP) and accumulate in some bacteria (long-chain polyP), support the contact activation of factor XII (FXII) and accelerate the activation of FXI.
OBJECTIVES - The aim of the present study was to evaluate the role of FXI in polyP-mediated coagulation activation and experimental thrombus formation.
METHODS AND RESULTS - Pretreatment of plasma with antibodies that selectively inhibit FXI activation by activated FXII (FXIIa) or FIX) activation by activated FXI (FXIa) were not able to inhibit the procoagulant effect of long or short-chain polyP in plasma. In contrast, the FXIIa inhibitor, corn trypsin inhibitor, blocked the procoagulant effect of long and short polyP in plasma. In a purified system, long polyP significantly enhanced the rate of FXII and prekallikrein activation and the activation of FXI by thrombin but not by FXIIa. In FXI-deficient plasma, long polyP promoted clotting of plasma in an FIX-dependent manner. In a purified system, the activation of FXII and prekallikrein by long polyP promoted FIX activation and prothombin activation. In an ex vivo model of occlusive thrombus formation, inhibition of FXIIa with corn trypsin inhibitor but not of FXI with a neutralizing antibodies abolished the prothrombotic effect of long polyP.
CONCLUSIONS - We propose that long polyP promotes FXII-mediated blood coagulation bypassing FXI. Accordingly, some polyp-containing pathogens may have evolved strategies to exploit polyP-initiated FXII activation for virulence, and selective inhibition of FXII may improve the host response to pathogens.
© 2013 International Society on Thrombosis and Haemostasis.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos.
Allen DK, Young JD
(2013) Plant Physiol 161: 1458-75
MeSH Terms: Amino Acids, Biomass, Biosynthetic Pathways, Carbon, Carbon Isotopes, Confidence Intervals, Culture Media, Fatty Acids, Isotope Labeling, Malate Dehydrogenase, Metabolome, Metabolomics, Nitrogen, Oxidation-Reduction, Pentose Phosphate Pathway, Plant Proteins, Pyruvates, Seeds, Soybeans
Show Abstract · Added January 23, 2015
Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-(13)C5]glutamine, [U-(13)C4]asparagine, and [1,2-(13)C2]glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-(14)C12]sucrose, [U-(14)C6]glucose, [U-(14)C5]glutamine, and [U-(14)C4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Artificial forisomes are ideal models of forisome assembly and activity that allow the development of technical devices.
Groscurth S, Müller B, Schwan S, Menzel M, Diekstall F, Senft M, Kendall A, Kommor BA, Neumann U, Kalischuk M, Kawchuk LM, Krzyzanek V, Heilmann A, Stubbs G, Twyman RM, Prüfer D, Noll GA
(2012) Biomacromolecules 13: 3076-86
MeSH Terms: Agrobacterium tumefaciens, Epidermal Cells, Epidermis, Medicago truncatula, Membranes, Artificial, Microscopy, Confocal, Microscopy, Electron, Transmission, Models, Molecular, Plant Proteins, Tobacco
Show Abstract · Added February 15, 2016
Forisomes are protein polymers found in leguminous plants that have the remarkable ability to undergo reversible "muscle-like" contractions in the presence of divalent cations and in extreme pH environments. To gain insight into the molecular basis of forisome structure and assembly, we used confocal laser scanning microscopy to monitor the assembly of fluorescence-labeled artificial forisomes in real time, revealing two distinct assembly processes involving either fiber elongation or fiber alignment. We also used scanning and transmission electron microscopy and X-ray diffraction to investigate the ultrastructure of forisomes, finding that individual fibers are arranged into compact fibril bundles that disentangle with minimal residual order in the presence of calcium ions. To demonstrate the potential applications of artificial forisomes, we created hybrid protein bodies from forisome subunits fused to the B-domain of staphylococcal protein A. This allowed the functionalization of the artificial forisomes with antibodies that were then used to target forisomes to specific regions on a substrate, providing a straightforward approach to develop forisome-based technical devices with precise configurations. The functional contractile properties of forisomes are also better preserved when they are immobilized via affinity reagents rather than by direct contact to the substrate. Artificial forisomes produced in plants and yeast therefore provide an ideal model for the investigation of forisome structure and assembly and for the design and testing of tailored artificial forisomes for technical applications.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Five anthocyanin polymorphisms are associated with an R2R3-MYB cluster in Mimulus guttatus (Phrymaceae).
Lowry DB, Sheng CC, Lasky JR, Willis JH
(2012) Am J Bot 99: 82-91
MeSH Terms: Anthocyanins, Biological Evolution, Chromosome Mapping, Climate, Flowers, Genetics, Population, Geography, Mimulus, Phenotype, Plant Leaves, Plant Proteins, Polymorphism, Genetic, Quantitative Trait Loci
Show Abstract · Added September 16, 2013
PREMISE OF STUDY - Botanists have long been interested in the reasons for genetic variation among individuals, populations, and species of plants. The anthocyanin pathway is ideal for studying the evolution of such phenotypic variation.
METHODS - We used a combination of quantitative trait loci mapping and association studies to understand the genetic basis of variation in five anthocyanin phenotypes including calyx, corolla, and leaf coloration patterns that vary within and among populations of Mimulus guttatus. We then examined what genes might be responsible for this phenotypic variation and whether one of the traits, calyx spotting, is randomly distributed across the geographic range of the species.
KEY RESULTS - All five phenotypes in M. guttatus were primarily controlled by the same major locus (PLA1), which contains a tandem array of three R2R3-MYB genes known to be involved in the evolution of flower color in a related species of Mimulus. Calyx spotting was nonrandomly distributed across the range of M. guttatus and correlated with multiple climate variables.
CONCLUSIONS - The results of this study suggest that variation in R2R3-MYB genes is the primary cause of potentially important anthocyanin phenotypic variation within and among populations of M. guttatus, a finding consistent with recent theoretical and empirical research on flower color evolution.
0 Communities
1 Members
0 Resources
13 MeSH Terms
On the role of molecular oxygen in lipoxygenase activation: comparison and contrast of epidermal lipoxygenase-3 with soybean lipoxygenase-1.
Zheng Y, Brash AR
(2010) J Biol Chem 285: 39876-87
MeSH Terms: Catalytic Domain, Enzyme Activation, Humans, Hydrogen Peroxide, Linoleic Acids, Lipoxygenase, Mutation, Missense, Oxygen, Plant Proteins, Soybeans, Species Specificity
Show Abstract · Added December 10, 2013
The oxygenation of polyunsaturated fatty acids by lipoxygenases (LOX) is associated with a lag phase during which the resting ferrous enzyme is converted to the active ferric form by reaction with fatty acid hydroperoxide. Epidermal lipoxygenase-3 (eLOX3) is atypical in displaying hydroperoxide isomerase activity with fatty acid hydroperoxides through cycling of the ferrous enzyme. Yet eLOX3 is capable of dioxygenase activity, albeit with a long lag phase and need for high concentrations of hydroperoxide activator. Here, we show that higher O(2) concentration shortens the lag phase in eLOX3, although it reduces the rate of hydroperoxide consumption, effects also associated with an A451G mutation known to affect the disposition of molecular oxygen in the LOX active site. These observations are consistent with a role of O(2) in interrupting hydroperoxide isomerase cycling. Activation of eLOX3, A451G eLOX3, and soybean LOX-1 with 13-hydroperoxy-linoleic acid forms oxygenated end products, which we identified as 9R- and 9S-hydroperoxy-12S,13S-trans-epoxyoctadec-10E-enoic acids. We deduce that activation partly depends on reaction of O(2) with the intermediate of hydroperoxide cleavage, the epoxyallylic radical, giving an epoxyallylic peroxyl radical that does not further react with Fe(III)-OH; instead, it dissociates and leaves the enzyme in the activated free ferric state. eLOX3 differs from soybean LOX-1 in more tightly binding the epoxyallylic radical and having limited access to O(2) within the active site, leading to a deficiency in activation and a dominant hydroperoxide isomerase activity.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Formation of a cyclopropyl epoxide via a leukotriene A synthase-related pathway in an anaerobic reaction of soybean lipoxygenase-1 with 15S-hydroperoxyeicosatetraenoic acid: evidence that oxygen access is a determinant of secondary reactions with fatty acid hydroperoxides.
Zheng Y, Brash AR
(2010) J Biol Chem 285: 13427-36
MeSH Terms: Animals, Arachidonate 5-Lipoxygenase, Epoxy Compounds, Lipid Peroxides, Lipoxygenase, Mammals, Models, Chemical, Oxidation-Reduction, Oxygen, Plant Proteins, Soybeans
Show Abstract · Added December 10, 2013
The further conversion of an arachidonic acid hydroperoxide to a leukotriene A (LTA) type epoxide by specific lipoxygenase (LOX) enzymes constitutes a key step in inflammatory mediator biosynthesis. Whereas mammalian 5-LOX transforms its primary product (5S-hydroperoxyeicosatetraenoic acid; 5S-HPETE) almost exclusively to LTA(4), the model enzyme, soybean LOX-1, normally produces no detectable leukotrienes and instead further oxygenates its primary product 15S-HPETE to 5,15- and 8,15-dihydroperoxides. Mammalian 15-LOX-1 displays both types of activity. We reasoned that availability of molecular oxygen within the LOX active site favors oxygenation, whereas lack of O(2) promotes LTA epoxide synthesis. To test this, we reacted 15S-HPETE with soybean LOX-1 under anaerobic conditions and identified the products by high pressure liquid chromatography, UV, mass spectrometry, and NMR. Among the products, we identified a pair of 8,15-dihydroxy diastereomers with all-trans-conjugated trienes that incorporated (18)O from H(2)(18)O at C-8, indicative of the formation of 14,15-LTA(4). A pair of 5,15-dihydroxy diastereomers containing two trans,trans-conjugated dienes (6E,8E,11E,13E) and that incorporated (18)O from H(2)(18)O at C-5 was deduced to arise from hydrolysis of a novel epoxide containing a cyclopropyl ring, 14,15-epoxy-[9,10,11-cyclopropyl]-eicosa-5Z,7E,13E-trienoic acid. Also identified was the delta-lactone of the 5,15-diol, a derivative that exhibited no (18)O incorporation due to its formation by intramolecular reaction of the carboxyl anion with the proposed epoxide intermediate. Our results support a model in which access to molecular oxygen within the active site directs the outcome from competing pathways in the secondary reactions of lipoxygenases.
0 Communities
1 Members
0 Resources
11 MeSH Terms