Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 25

Publication Record

Connections

Exercise and CKD: Skeletal Muscle Dysfunction and Practical Application of Exercise to Prevent and Treat Physical Impairments in CKD.
Roshanravan B, Gamboa J, Wilund K
(2017) Am J Kidney Dis 69: 837-852
MeSH Terms: Aged, Exercise, Exercise Therapy, Frail Elderly, Hand Strength, Humans, Kidney Failure, Chronic, Male, Mobility Limitation, Muscle Weakness, Muscle, Skeletal, Physical Endurance, Renal Insufficiency, Chronic, Sarcopenia, Walk Test
Show Abstract · Added April 26, 2017
Patients with chronic kidney disease experience substantial loss of muscle mass, weakness, and poor physical performance. As kidney disease progresses, skeletal muscle dysfunction forms a common pathway for mobility limitation, loss of functional independence, and vulnerability to disease complications. Screening for those at high risk for mobility disability by self-reported and objective measures of function is an essential first step in developing an interdisciplinary approach to treatment that includes rehabilitative therapies and counseling on physical activity. Exercise has beneficial effects on systemic inflammation, muscle, and physical performance in chronic kidney disease. Kidney health providers need to identify patient and care delivery barriers to exercise in order to effectively counsel patients on physical activity. A thorough medical evaluation and assessment of baseline function using self-reported and objective function assessment is essential to guide an effective individualized exercise prescription to prevent function decline in persons with kidney disease. This review focuses on the impact of kidney disease on skeletal muscle dysfunction in the context of the disablement process and reviews screening and treatment strategies that kidney health professionals can use in clinical practice to prevent functional decline and disability.
Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Association of Muscle Endurance, Fatigability, and Strength With Functional Limitation and Mortality in the Health Aging and Body Composition Study.
Roshanravan B, Patel KV, Fried LF, Robinson-Cohen C, de Boer IH, Harris T, Murphy RA, Satterfield S, Goodpaster BH, Shlipak M, Newman AB, Kestenbaum B, Health ABC study
(2017) J Gerontol A Biol Sci Med Sci 72: 284-291
MeSH Terms: Aged, Aged, 80 and over, Body Composition, Female, Humans, Lower Extremity, Male, Mobility Limitation, Muscle Fatigue, Muscle Strength, Physical Endurance
Show Abstract · Added September 19, 2017
BACKGROUND - Mobility limitation is highly prevalent among older adults and is central to the loss of functional independence. Dynamic isokinetic muscle fatigue testing may reveal increased vulnerability to disability and mortality beyond strength testing.
METHODS - We studied community-dwelling older adults enrolled in the Health Aging and Body Composition study (age range: 71-82) free of mobility disability and who underwent isokinetic muscle fatigue testing in 1999-2000 (n = 1,963). Isokinetic quadriceps work and fatigue index was determined over 30 repetitions and compared with isometric quadriceps maximum torque. Work was normalized to leg lean mass accounting for gender-specific differences (specific work). The primary outcome was incident persistent severe lower extremity limitation (PSLL), defined as two consecutive reports of either having a lot of difficulty or being unable to walk 1/4 mile or climb 10 steps without resting. The secondary outcome was all-cause mortality.
RESULTS - There were 608 (31%) occurrences of incident PSLL and 488 (25%) deaths during median follow-up of 9.3 years. After adjustment, lower isokinetic work was associated with significantly greater risks of PSLL and mortality across the full measured range. Hazard ratios per standard deviation lower specific isokinetic work were 1.22 (95% CI 1.12, 1.33) for PSLL and 1.21 (95% CI 1.13, 1.30) for mortality, respectively. Lower isometric strength was associated with PSLL, but not mortality. Fatigue index was not associated with PSLL or mortality.
CONCLUSIONS - Muscle endurance, estimated by isokinetic work, is an indicator of muscle health associated with mobility limitation and mortality providing important insight beyond strength testing.
© The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Post-contractile BOLD contrast in skeletal muscle at 7 T reveals inter-individual heterogeneity in the physiological responses to muscle contraction.
Towse TF, Elder CP, Bush EC, Klockenkemper SW, Bullock JT, Dortch RD, Damon BM
(2016) NMR Biomed 29: 1720-1728
MeSH Terms: Adult, Blood Flow Velocity, Blood Volume, Female, Humans, Magnetic Resonance Imaging, Male, Muscle Contraction, Muscle, Skeletal, Oxygen, Oxygen Consumption, Physical Endurance, Reproducibility of Results, Sensitivity and Specificity
Show Abstract · Added October 24, 2018
Muscle blood oxygenation-level dependent (BOLD) contrast is greater in magnitude and potentially more influenced by extravascular BOLD mechanisms at 7 T than it is at lower field strengths. Muscle BOLD imaging of muscle contractions at 7 T could, therefore, provide greater or different contrast than at 3 T. The purpose of this study was to evaluate the feasibility of using BOLD imaging at 7 T to assess the physiological responses to in vivo muscle contractions. Thirteen subjects (four females) performed a series of isometric contractions of the calf muscles while being scanned in a Philips Achieva 7 T human imager. Following 2 s maximal isometric plantarflexion contractions, BOLD signal transients ranging from 0.3 to 7.0% of the pre-contraction signal intensity were observed in the soleus muscle. We observed considerable inter-subject variability in both the magnitude and time course of the muscle BOLD signal. A subset of subjects (n = 7) repeated the contraction protocol at two different repetition times (T : 1000 and 2500 ms) to determine the potential of T -related inflow effects on the magnitude of the post-contractile BOLD response. Consistent with previous reports, there was no difference in the magnitude of the responses for the two T values (3.8 ± 0.9 versus 4.0 ± 0.6% for T  = 1000 and 2500 ms, respectively; mean ± standard error). These results demonstrate that studies of the muscle BOLD responses to contractions are feasible at 7 T. Compared with studies at lower field strengths, post-contractile 7 T muscle BOLD contrast may afford greater insight into microvascular function and dysfunction.
Copyright © 2016 John Wiley & Sons, Ltd.
0 Communities
1 Members
0 Resources
MeSH Terms
AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.
Lantier L, Fentz J, Mounier R, Leclerc J, Treebak JT, Pehmøller C, Sanz N, Sakakibara I, Saint-Amand E, Rimbaud S, Maire P, Marette A, Ventura-Clapier R, Ferry A, Wojtaszewski JF, Foretz M, Viollet B
(2014) FASEB J 28: 3211-24
MeSH Terms: AMP-Activated Protein Kinases, Animals, Glucose, Interleukin-6, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mitochondria, Muscle Contraction, Muscle Fatigue, Muscle Fibers, Skeletal, Oxidation-Reduction, Phosphorylation, Physical Conditioning, Animal, Physical Endurance
Show Abstract · Added April 17, 2014
AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle exercise capacity, mitochondrial function, and contraction-stimulated glucose uptake. Exercise performance was significantly reduced in the mdKO mice, with a reduction in maximal force production and fatigue resistance. An increase in the proportion of myofibers with centralized nuclei was noted, as well as an elevated expression of interleukin 6 (IL-6) mRNA, possibly consistent with mild skeletal muscle injury. Notably, we found that AMPKα1 and AMPKα2 isoforms are dispensable for contraction-induced skeletal muscle glucose transport, except for male soleus muscle. However, the lack of skeletal muscle AMPK diminished maximal ADP-stimulated mitochondrial respiration, showing an impairment at complex I. This effect was not accompanied by changes in mitochondrial number, indicating that AMPK regulates muscle metabolic adaptation through the regulation of muscle mitochondrial oxidative capacity and mitochondrial substrate utilization but not baseline mitochondrial muscle content. Together, these results demonstrate that skeletal muscle AMPK has an unexpected role in the regulation of mitochondrial oxidative phosphorylation that contributes to the energy demands of the exercising muscle.-Lantier, L., Fentz, J., Mounier, R., Leclerc, J., Treebak, J. T., Pehmøller, C., Sanz, N., Sakakibara, I., Saint-Amand, E., Rimbaud, S., Maire, P., Marette, A., Ventura-Clapier, R., Ferry, A., Wojtaszewski, J. F. P., Foretz, M., Viollet, B. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.
© FASEB.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Transgenic overexpression of the presynaptic choline transporter elevates acetylcholine levels and augments motor endurance.
Holmstrand EC, Lund D, Cherian AK, Wright J, Martin RF, Ennis EA, Stanwood GD, Sarter M, Blakely RD
(2014) Neurochem Int 73: 217-28
MeSH Terms: Acetylcholine, Animals, Behavior, Animal, Choline, Cholinergic Agents, Chromosomes, Artificial, Bacterial, Gene Dosage, Hemicholinium 3, Membrane Transport Proteins, Mice, Mice, Inbred C57BL, Mice, Transgenic, Physical Endurance, Receptors, Presynaptic, Synaptosomes
Show Abstract · Added December 2, 2013
The hemicholinium-3 (HC-3) sensitive, high-affinity choline transporter (CHT) sustains cholinergic signaling via the presynaptic uptake of choline derived from dietary sources or from acetylcholinesterase (AChE)-mediated hydrolysis of acetylcholine (ACh). Loss of cholinergic signaling capacity is associated with cognitive and motor deficits in humans and in animal models. Whereas genetic elimination of CHT has revealed the critical nature of CHT in maintaining ACh stores and sustaining cholinergic signaling, the consequences of elevating CHT expression have yet to be studied. Using bacterial artificial chromosome (BAC)-mediated transgenic methods, we generated mice with integrated additional copies of the mouse Slc5a7 gene. BAC-CHT mice are viable, appear to develop normally, and breed at wild-type (WT) rates. Biochemical studies revealed a 2 to 3-fold elevation in CHT protein levels in the CNS and periphery, paralleled by significant increases in [(3)H]HC-3 binding and synaptosomal choline transport activity. Elevations of ACh in the BAC-CHT mice occurred without compensatory changes in the activity of either choline acetyltransferase (ChAT) or AChE. Immunohistochemistry for CHT in BAC-CHT brain sections revealed markedly elevated CHT expression in the cell bodies of cholinergic neurons and in axons projecting to regions known to receive cholinergic innervation. Behaviorally, BAC-CHT mice exhibited diminished fatigue and increased speeds on the treadmill test without evidence of increased strength. Finally, BAC-CHT mice displayed elevated horizontal activity in the open field test, diminished spontaneous alteration in the Y-maze, and reduced time in the open arms of the elevated plus maze. Together, these studies provide biochemical, pharmacological and behavioral evidence that CHT protein expression and activity can be elevated beyond that seen in wild-type animals. BAC-CHT mice thus represent a novel tool to examine both the positive and negative impact of constitutively elevated cholinergic signaling capacity.
Copyright © 2013 Elsevier Ltd. All rights reserved.
1 Communities
2 Members
0 Resources
15 MeSH Terms
Blood pressure and left ventricular hypertrophy during American-style football participation.
Weiner RB, Wang F, Isaacs SK, Malhotra R, Berkstresser B, Kim JH, Hutter AM, Picard MH, Wang TJ, Baggish AL
(2013) Circulation 128: 524-31
MeSH Terms: Adolescent, Athletes, Blood Pressure, Blood Pressure Determination, Football, Humans, Hypertension, Hypertrophy, Left Ventricular, Longitudinal Studies, Male, Physical Endurance, Prospective Studies, Students, United States, Universities, Young Adult
Show Abstract · Added April 15, 2014
BACKGROUND - Hypertension, a strong determinant of cardiovascular disease risk, has been documented among elite, professional American-style football (ASF) players. The risk of increased blood pressure (BP) and early adulthood hypertension among the substantially larger population of collegiate ASF athletes is not known.
METHODS AND RESULTS - We conducted a prospective, longitudinal study to examine BP, the incidence of hypertension, and left ventricular remodeling among collegiate ASF athletes. Resting BP and left ventricular structure were assessed before and after a single season of competitive ASF participation in 6 consecutive groups of first-year university athletes (n=113). ASF participation was associated with significant increases in systolic BP (116±8 versus 125±13 mm Hg; P<0.001) and diastolic BP (64±8 mm Hg versus 66±10 mm Hg; P<0.001). At the postseason assessment, the majority of athletes met criteria for Joint National Commission (seventh report) prehypertension (53 of 113, 47%) or stage 1 hypertension (16 of 113, 14%). Among measured characteristics, lineman field position, intraseason weight gain, and family history of hypertension were the strongest independent predictors of postseason BP. Among linemen, there was a significant increase in the prevalence of concentric left ventricular hypertrophy (2 of 64 [3%] versus 20 of 64 [31%]; P<0.001) and change in left ventricular mass correlated with intraseason change in systolic BP (R=0.46, P<0.001).
CONCLUSIONS - Collegiate ASF athletes may be at risk for clinically relevant increases in BP and the development of hypertension. Enhanced surveillance and carefully selected interventions may represent important opportunities to improve later-life cardiovascular health outcomes in this population.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Safety and feasibility of adjunctive regadenoson injection at peak exercise during exercise myocardial perfusion imaging: The Both Exercise and Regadenoson Stress Test (BERST) trial.
Ross MI, Wu E, Wilkins JT, Gupta D, Shen S, Aulwes D, Montero K, Holly TA
(2013) J Nucl Cardiol 20: 197-204
MeSH Terms: Adenosine A2 Receptor Agonists, Adult, Coronary Artery Disease, Exercise Test, Female, Humans, Image Enhancement, Male, Myocardial Perfusion Imaging, Physical Endurance, Physical Exertion, Purines, Pyrazoles, Reproducibility of Results, Sensitivity and Specificity, Tomography, Emission-Computed, Single-Photon, Vasodilator Agents
Show Abstract · Added February 28, 2014
BACKGROUND - The data existing in the literature regarding the safety of using regadenoson with symptom-limited exercise are limited, which motivated the authors to undertake this randomized study.
METHODS - We offered patients scheduled to undergo vasodilator stress nuclear myocardial perfusion imaging the opportunity to exercise instead. Patients who failed to reach target heart rate (THR) were randomized to (1) receive regadenoson at peak exercise or (2) stop exercise and receive regadenoson at rest. Patients who reached THR received a standard Tc-99m sestamibi injection with no regadenoson.
RESULTS - 200 patients were included (66% male, mean age 52.5 ± 13.6). 125 patients (62%) reached THR with exercise alone. All stress protocols were well tolerated, and there were no significant adverse events. There were no statistically significant differences in the extent of perfusion abnormalities, image quality, or rate of referral to cardiac catheterization within 60 days between the groups. In fully adjusted logistic regression models, beta-blocker use and diabetes remained significant univariate predictors of failure to reach THR (OR 0.21, 95% CI 0.1-0.5, P < .0001, OR 0.34, 95% CI 0.2-0.7, P = .004, respectively).
CONCLUSIONS - A protocol combining regadenoson at peak exercise in patients unable to reach THR with exercise is feasible, well-tolerated, and yields comparable imaging results to a standard regadenoson injection at rest. In addition, pharmacologic stress testing may be over-ordered in current clinical practice, as patients referred for such testing were often able to exercise.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Muscle endurance and mitochondrial function after chronic normobaric hypoxia: contrast of respiratory and limb muscles.
Gamboa JL, Andrade FH
(2012) Pflugers Arch 463: 327-38
MeSH Terms: Animals, Diaphragm, Hypoxia, Ion Channels, Lower Extremity, Male, Mice, Mice, Inbred C57BL, Mitochondria, Muscle, Mitochondrial Proteins, Models, Animal, Muscle Fatigue, Muscle Fibers, Skeletal, Muscle Strength, Oxygen Consumption, Physical Endurance, Respiratory Muscles, Time Factors, Uncoupling Protein 3, Upper Extremity
Show Abstract · Added April 25, 2016
Skeletal muscle adaptation to chronic hypoxia includes loss of oxidative capacity and decrease in fiber size. However, the diaphragm may adapt differently since its activity increases in response to hypoxia. Thus, we hypothesized that chronic hypoxia would not affect endurance, mitochondrial function, or fiber size in the mouse diaphragm. Adult male mice were kept in normoxia (control) or hypoxia (hypoxia, FIO(2) = 10%) for 4 weeks. After that time, muscles were collected for histological, biochemical, and functional analyses. Hypoxia soleus muscles fatigued faster (fatigue index higher in control, 21.5 ± 2.6% vs. 13.4 ± 2.4%, p < 0.05), but there was no difference between control and hypoxia diaphragm bundles. Mean fiber cross-sectional area was unchanged in hypoxia limb muscles, but it was 25% smaller in diaphragm (p < 0.001). Ratio of capillary length contact to fiber perimeter was significantly higher in hypoxia diaphragm (28.6 ± 1.2 vs. 49.3 ± 1.4, control and hypoxia, p < 0.001). Mitochondrial respiration rates in hypoxia limb muscles were lower: state 2 decreased 19%, state 3 31%, and state 4 18% vs. control, p < 0.05 for all comparisons. There were similar changes in hypoxia diaphragm: state 3 decreased 29% and state 4 17%, p < 0.05. After 4 weeks of hypoxia, limb muscle mitochondria had lower content of complex IV (cytochrome c oxidase), while diaphragm mitochondria had higher content of complexes IV and V (F (1)/F (0) ATP synthase) and less uncoupling protein 3 (UCP-3). These data demonstrate that diaphragm retains its endurance during chronic hypoxia, apparently due to a combination of morphometric changes and optimization of mitochondrial energy production.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running.
McAnulty LS, Nieman DC, Dumke CL, Shooter LA, Henson DA, Utter AC, Milne G, McAnulty SR
(2011) Appl Physiol Nutr Metab 36: 976-84
MeSH Terms: Adolescent, Adult, Anti-Inflammatory Agents, Non-Steroidal, Antioxidants, Athletes, Biomarkers, Blueberry Plants, Exercise, F2-Isoprostanes, Fruit, Humans, Interleukin-10, Killer Cells, Natural, Lymphocyte Count, Myositis, Oxidative Stress, Physical Endurance, Running, Thymidine, Young Adult
Show Abstract · Added March 26, 2014
Blueberries are rich in antioxidants known as anthocyanins, which may exhibit significant health benefits. Strenous exercise is known to acutely generate oxidative stress and an inflammatory state, and serves as an on-demand model to test antioxidant and anti-inflammatory compounds. The purpose of this study was to examine whether 250 g of blueberries per day for 6 weeks and 375 g given 1 h prior to 2.5 h of running at ∼72% maximal oxygen consumption counters oxidative stress, inflammation, and immune changes. Twenty-five well-trained subjects were recruited and randomized into blueberry (BB) (N = 13) or control (CON) (N = 12) groups. Blood, muscle, and urine samples were obtained pre-exercise and immediately postexercise, and blood and urine 1 h postexercise. Blood was examined for F₂-isoprostanes for oxidative stress, cortisol, cytokines, homocysteine, leukocytes, T-cell function, natural killer (NK), and lymphocyte cell counts for inflammation and immune system activation, and ferric reducing ability of plasma for antioxidant capacity. Muscle biopsies were examined for glycogen and NFkB expression to evaluate stress and inflammation. Urine was tested for modification of DNA (8-OHDG) and RNA (5-OHMU) as markers of nucleic acid oxidation. A 2 (treatment) × 3 (time) repeated measures ANOVA was used for statistical analysis. Increases in F₂-isoprostanes and 5-OHMU were significantly less in BB and plasma IL-10 and NK cell counts were significantly greater in BB vs. CON. Changes in all other markers did not differ. This study indicates that daily blueberry consumption for 6 weeks increases NK cell counts, and acute ingestion reduces oxidative stress and increases anti-inflammatory cytokines.
1 Communities
1 Members
0 Resources
20 MeSH Terms
Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training.
Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, Wang TJ, Chan SY
(2011) J Physiol 589: 3983-94
MeSH Terms: Athletes, Cohort Studies, Exercise, Humans, Longitudinal Studies, Male, MicroRNAs, Physical Endurance, Prospective Studies, Time Factors, Young Adult
Show Abstract · Added April 15, 2014
MicroRNAs (miRNAs) are intracellular mediators of essential biological functions. Recently, plasma-based 'circulating' miRNAs (c-miRNAs) have been shown to control cellular processes, but the c-miRNA response to human exercise remains unknown. We sought to determine whether c-miRNAs are dynamically regulated in response to acute exhaustive cycling exercise and sustained rowing exercise training using a longitudinal, repeated measures study design. Specifically, c-miRNAs involved in angiogenesis (miR-20a, miR-210, miR-221, miR-222, miR-328), inflammation (miR-21, miR-146a), skeletal and cardiac muscle contractility (miR-21, miR-133a), and hypoxia/ischaemia adaptation (miR-21, miR-146a, and miR-210) were measured at rest and immediately following acute exhaustive cycling exercise in competitive male rowers (n = 10, age = 19.1 ± 0.6 years) before and after a 90 day period of rowing training. Distinct patterns of c-miRNA response to exercise were observed and adhered to four major profiles: (1) c-miRNA up-regulated by acute exercise before and after sustained training (miR-146a and miR-222), (2) c-miRNA responsive to acute exercise before but not after sustained training (miR-21 and miR-221), (3) c-miRNA responsive only to sustained training (miR-20a), and (4) non-responsive c-miRNA (miR-133a, miR-210, miR-328). Linear correlations were observed between peak exercise levels of miR-146a and VO2max (r = 0.63, P = 0.003) and between changes in resting miR-20a and changes in VO2max (pre-training vs. post-training, r = 0.73; P = 0.02). Although future work is required, these results suggest the potential value of c-miRNAs as exercise biomarkers and their possible roles as physiological mediators of exercise-induced cardiovascular adaptation.
0 Communities
1 Members
0 Resources
11 MeSH Terms