Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 232

Publication Record

Connections

Hyperactivity and Reduced Activation of Anterior Hippocampus in Early Psychosis.
McHugo M, Talati P, Armstrong K, Vandekar SN, Blackford JU, Woodward ND, Heckers S
(2019) Am J Psychiatry 176: 1030-1038
MeSH Terms: Case-Control Studies, Female, Hippocampus, Humans, Magnetic Resonance Imaging, Male, Photic Stimulation, Schizophrenia, Time Factors, Young Adult
Show Abstract · Added January 31, 2020
OBJECTIVE - In schizophrenia, the anterior hippocampus is hyperactive and shows reduced task-related recruitment, but the relationship between these two findings is unclear. The authors tested the hypothesis that hyperactivity impairs recruitment of the anterior hippocampus during scene processing.
METHODS - Functional MRI data from 45 early-psychosis patients and 35 demographically matched healthy control subjects were analyzed using a block-design 1-back scene-processing task. Hippocampal activation in response to scenes and faces compared with scrambled images was measured. In a subset of 20 early-psychosis patients and 31 healthy control subjects, baseline hippocampal activity using cerebral blood volume (CBV) mapping was measured. Correlation analyses were used to examine the association between baseline hippocampal activity and task-related hippocampal activation.
RESULTS - Activation of the anterior hippocampus was significantly reduced and CBV in the anterior hippocampus was significantly increased in the early stages of psychosis. Increased CBV in early-psychosis patients was inversely correlated with task-related activation during scene processing in the anterior hippocampus.
CONCLUSIONS - Anterior hippocampal hyperactivity in early-psychosis patients appears to limit effective recruitment of this region during task performance. These findings provide novel support for the anterior hippocampus as a therapeutic target in the treatment of cognitive deficits in psychosis.
0 Communities
2 Members
0 Resources
10 MeSH Terms
Temporal dynamics of binocular integration in primary visual cortex.
Cox MA, Dougherty K, Westerberg JA, Schall MS, Maier A
(2019) J Vis 19: 13
MeSH Terms: Animals, Behavior, Animal, Female, Macaca radiata, Male, Neurons, Neurophysiology, Ocular Physiological Phenomena, Photic Stimulation, Reproducibility of Results, Time Factors, Vision, Binocular, Visual Cortex
Show Abstract · Added August 27, 2020
Whenever we open our eyes, our brain quickly integrates the two eyes' perspectives into a combined view. This process of binocular integration happens so rapidly that even incompatible stimuli are briefly fused before one eye's view is suppressed in favor of the other (binocular rivalry). The neuronal basis for this brief period of fusion during incompatible binocular stimulation is unclear. Neuroanatomically, the eyes provide two largely separate streams of information that are integrated into a binocular response by the primary visual cortex (V1). However, the temporal dynamics underlying the formation of this binocular response are largely unknown. To address this question, we examined the temporal profile of binocular responses in V1 of fixating monkeys. We found that V1 processes binocular stimuli in a dynamic sequence that comprises at least two distinct temporal phases. An initial transient phase is characterized by enhanced spiking responses for both compatible and incompatible binocular stimuli compared to monocular stimulation. This transient is followed by a sustained response that differed markedly between congruent and incongruent binocular stimulation. Specifically, incompatible binocular stimulation resulted in overall response reduction relative to monocular stimulation (binocular suppression). In contrast, responses to compatible stimuli were either suppressed or enhanced (binocular facilitation) depending on the neurons' ocularity (selectivity for one eye over the other) and laminar location. These results suggest that binocular integration in V1 occurs in at least two sequential steps that comprise initial additive combination of the two eyes' signals followed by widespread differentiation between binocular concordance and discordance.
0 Communities
1 Members
0 Resources
MeSH Terms
Figure-Ground Modulation in the Human Lateral Geniculate Nucleus Is Distinguishable from Top-Down Attention.
Poltoratski S, Maier A, Newton AT, Tong F
(2019) Curr Biol 29: 2051-2057.e3
MeSH Terms: Adult, Female, Geniculate Bodies, Humans, Magnetic Resonance Imaging, Male, Photic Stimulation, Visual Cortex, Visual Pathways, Young Adult
Show Abstract · Added August 27, 2020
Nearly all of the information that reaches the primary visual cortex (V1) of the brain passes from the retina through the lateral geniculate nucleus (LGN) of the thalamus. Although the LGN's role in relaying feedforward signals from the retina to the cortex is well understood [1, 2], the functional role of the extensive feedback it receives from the cortex has remained elusive [3-6]. Here, we investigated whether corticothalamic feedback may contribute to perceptual processing in the LGN in a manner that is distinct from top-down effects of attention [7-10]. We used high-resolution fMRI at 7 Tesla to simultaneously measure responses to orientation-defined figures in the human LGN and V1. We found robust enhancement of perceptual figures throughout the early visual system, which could be distinguished from the effects of covert spatial attention [11-13]. In a second experiment, we demonstrated that figure enhancement occurred in the LGN even when the figure and surrounding background were presented dichoptically (i.e., to different eyes). As binocular integration primarily occurs in V1 [14, 15], these results implicate a mechanism of automatic, contextually sensitive feedback from binocular visual cortex underlying figure-ground modulation in the LGN. Our findings elucidate the functional mechanisms of this core function of the visual system [16-18], which allows people to segment and detect meaningful figures in complex visual environments. The involvement of the LGN in this rich, contextually informed visual processing-despite showing minimal feedforward selectivity for visual features [19, 20]-underscores the role of recurrent processing at the earliest stages of visual processing.
Copyright © 2019 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
The emotional attentional blink is robust to divided attention.
Keefe JM, Sy JL, Tong F, Zald DH
(2019) Atten Percept Psychophys 81: 205-216
MeSH Terms: Adult, Attention, Attentional Blink, Awareness, Emotions, Female, Humans, Male, Orientation, Spatial, Photic Stimulation, Young Adult
Show Abstract · Added April 15, 2019
The emotional attentional blink (EAB) refers to a temporary impairment in the ability to identify a target when it is preceded by an emotional distractor. It is thought to occur because the emotional salience of the distractor exogenously captures attention for a brief duration, rendering the target unattended and preventing it from reaching awareness. Here we tested the extent to which the EAB can be attenuated by inducing a diffuse top-down attentional state, which has been shown to improve target identification in an analogous attentional phenomenon, the attentional blink. Rapid sequences of landscape images were presented centrally, and participants reported the orientation of a ± 90° rotation of a landscape target. To induce a diffuse state of attention, participants were given a secondary task of monitoring for the appearance of a colored dot in the periphery. We found that emotional distractors impaired target recognition performance to comparable extents, regardless of whether or not participants concurrently performed the peripheral-monitoring task. Moreover, we found that performance of the secondary task led to an impaired ability to ignore neutral distractors. Subjective ratings of target vividness mirrored the behavioral accuracy, with frequent reports of intermediate levels of vividness suggesting that the EAB might impair target visibility in a graded manner. Our results demonstrate that the EAB is robust to manipulations of top-down attention, suggesting that the temporary capture of attention by emotionally salient stimuli involves processes that are distinct from those that produce the attentional blink.
0 Communities
1 Members
0 Resources
MeSH Terms
A Novel Multisensory Stimulation and Data Capture System (MADCAP) for Investigating Sensory Trajectories in Infancy.
Bian D, Zheng Z, Swanson A, Weitlauf A, Woynaroski T, Cascio CJ, Key AP, Warren Z, Sarkar N
(2018) IEEE Trans Neural Syst Rehabil Eng 26: 1526-1534
MeSH Terms: Acoustic Stimulation, Adult, Autism Spectrum Disorder, Child Development, Electroencephalography, Eye Movements, Feasibility Studies, Female, Fixation, Ocular, Humans, Infant, Male, Photic Stimulation, Physical Stimulation, Reproducibility of Results, Sensation
Show Abstract · Added March 18, 2020
Sensory processing differences, including responses to auditory, visual, and tactile stimuli, are ideal targets for early detection of neurodevelopmental risks, such as autism spectrum disorder. However, most existing studies focus on the audiovisual paradigm and ignore the sense of touch. In this paper, we present a multisensory delivery system that can deliver audio, visual, and tactile stimuli in a controlled manner and capture peripheral physiological, eye gaze, and electroencephalographic response data. The novelty of the system is the ability to provide affective touch. In particular, we have developed a tactile stimulation device that delivers tactile stimuli to infants with precisely controlled brush stroking speed and force on the skin. A usability study of 10 3-20 month-old infants was conducted to investigate the tolerability and feasibility of the system. Results have shown that the system is well tolerated by infants and all the data were collected robustly. This paper paves the way for future studies charting the sensory response trajectories in infancy.
0 Communities
1 Members
0 Resources
MeSH Terms
Morphological and functional changes in the rat retina associated with 2 months of intermittent moderate intraocular pressure elevation.
Tan B, Gurdita A, Choh V, Joos KM, Prasad R, Bizheva K
(2018) Sci Rep 8: 7727
MeSH Terms: Animals, Dark Adaptation, Electroretinography, Intraocular Pressure, Male, Ocular Hypertension, Optic Disk, Photic Stimulation, Rats, Rats, Sprague-Dawley, Retina
Show Abstract · Added April 3, 2019
Morphological and functional changes in the rat retina and optic nerve head (ONH), associated with 8 weeks of intermittent moderately elevated intraocular pressure (IOP) were measured with a combined ultrahigh resolution optical coherence tomography (UHR-OCT) and electroretinography (ERG) system. The IOP of male Sprague-Dawley rats was raised in one eye to ~35 mmHg for 1 hour/day on 6 days each week using vascular loops. Single-flash ERG traces and volumetric UHR-OCT images of the ONH were acquired from both eyes before, during and after IOP elevations at weeks 1, 5 and 9 of the study. The UHR-OCT images showed depression of the posterior eye around the ONH during the IOP elevations, the magnitude of which increased significantly from week 1 to week 9 (p = 0.01). The ERG a-wave and b-wave amplitudes increased temporarily during IOP elevations and returned to normal ~30 minutes after loop removal. Recurrent intermittent IOP spikes caused > 30% decrease in the ERG a-wave and b-wave amplitudes measured during the IOP elevations over the course of 2 months. This study suggests that recurrent, relatively short-duration IOP spikes for extended period of time are associated with peri-ONH tissue hypercompliance and reduced retinal functional response to visual stimulation during acute IOP elevation.
0 Communities
1 Members
0 Resources
11 MeSH Terms
High-resolution Functional Magnetic Resonance Imaging Reveals Configural Processing of Cars in Right Anterior Fusiform Face Area of Car Experts.
Ross DA, Tamber-Rosenau BJ, Palmeri TJ, Zhang J, Xu Y, Gauthier I
(2018) J Cogn Neurosci 30: 973-984
MeSH Terms: Adult, Automobiles, Brain Mapping, Discrimination, Psychological, Functional Laterality, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Oxygen, Pattern Recognition, Visual, Photic Stimulation, Professional Competence, Psychomotor Performance, Temporal Lobe, Young Adult
Show Abstract · Added April 3, 2018
Visual object expertise correlates with neural selectivity in the fusiform face area (FFA). Although behavioral studies suggest that visual expertise is associated with increased use of holistic and configural information, little is known about the nature of the supporting neural representations. Using high-resolution 7-T functional magnetic resonance imaging, we recorded the multivoxel activation patterns elicited by whole cars, configurally disrupted cars, and car parts in individuals with a wide range of car expertise. A probabilistic support vector machine classifier was trained to differentiate activation patterns elicited by whole car images from activation patterns elicited by misconfigured car images. The classifier was then used to classify new combined activation patterns that were created by averaging activation patterns elicited by individually presented top and bottom car parts. In line with the idea that the configuration of parts is critical to expert visual perception, car expertise was negatively associated with the probability of a combined activation pattern being classified as a whole car in the right anterior FFA, a region critical to vision for categories of expertise. Thus, just as found for faces in normal observers, the neural representation of cars in right anterior FFA is more holistic for car experts than car novices, consistent with common mechanisms of neural selectivity for faces and other objects of expertise in this area.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Probing Electrophysiological Indices of Perceptual Awareness across Unisensory and Multisensory Modalities.
Noel JP, Simon D, Thelen A, Maier A, Blake R, Wallace MT
(2018) J Cogn Neurosci 30: 814-828
MeSH Terms: Acoustic Stimulation, Adult, Auditory Perception, Awareness, Brain, Electroencephalography, Evoked Potentials, Auditory, Evoked Potentials, Visual, Female, Humans, Male, Photic Stimulation, Psychophysics, Reaction Time, Visual Perception, Young Adult
Show Abstract · Added August 27, 2020
The neural underpinnings of perceptual awareness have been extensively studied using unisensory (e.g., visual alone) stimuli. However, perception is generally multisensory, and it is unclear whether the neural architecture uncovered in these studies directly translates to the multisensory domain. Here, we use EEG to examine brain responses associated with the processing of visual, auditory, and audiovisual stimuli presented near threshold levels of detectability, with the aim of deciphering similarities and differences in the neural signals indexing the transition into perceptual awareness across vision, audition, and combined visual-auditory (multisensory) processing. More specifically, we examine (1) the presence of late evoked potentials (∼>300 msec), (2) the across-trial reproducibility, and (3) the evoked complexity associated with perceived versus nonperceived stimuli. Results reveal that, although perceived stimuli are associated with the presence of late evoked potentials across each of the examined sensory modalities, between-trial variability and EEG complexity differed for unisensory versus multisensory conditions. Whereas across-trial variability and complexity differed for perceived versus nonperceived stimuli in the visual and auditory conditions, this was not the case for the multisensory condition. Taken together, these results suggest that there are fundamental differences in the neural correlates of perceptual awareness for unisensory versus multisensory stimuli. Specifically, the work argues that the presence of late evoked potentials, as opposed to neural reproducibility or complexity, most closely tracks perceptual awareness regardless of the nature of the sensory stimulus. In addition, the current findings suggest a greater similarity between the neural correlates of perceptual awareness of unisensory (visual and auditory) stimuli when compared with multisensory stimuli.
0 Communities
1 Members
0 Resources
MeSH Terms
Binocular response modulation in the lateral geniculate nucleus.
Dougherty K, Schmid MC, Maier A
(2019) J Comp Neurol 527: 522-534
MeSH Terms: Action Potentials, Animals, Geniculate Bodies, Humans, Photic Stimulation, Retina, Vision, Binocular, Visual Cortex, Visual Fields, Visual Pathways
Show Abstract · Added August 27, 2020
The dorsal lateral geniculate nucleus of the thalamus (LGN) receives the main outputs of both eyes and relays those signals to the visual cortex. Each retina projects to separate layers of the LGN so that each LGN neuron is innervated by a single eye. In line with this anatomical separation, visual responses of almost all of LGN neurons are driven by one eye only. Nonetheless, many LGN neurons are sensitive to what is shown to the other eye as their visual responses differ when both eyes are stimulated compared to when the driving eye is stimulated in isolation. This, predominantly suppressive, binocular modulation of LGN responses might suggest that the LGN is the first location in the primary visual pathway where the outputs from the two eyes interact. Indeed, the LGN features several anatomical structures that would allow for LGN neurons responding to one eye to modulate neurons that respond to the other eye. However, it is also possible that binocular response modulation in the LGN arises indirectly as the LGN also receives input from binocular visual structures. Here we review the extant literature on the effects of binocular stimulation on LGN spiking responses, highlighting findings from cats and primates, and evaluate the neural circuits that might mediate binocular response modulation in the LGN.
© 2018 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Spiking Suppression Precedes Cued Attentional Enhancement of Neural Responses in Primary Visual Cortex.
Cox MA, Dougherty K, Adams GK, Reavis EA, Westerberg JA, Moore BS, Leopold DA, Maier A
(2019) Cereb Cortex 29: 77-90
MeSH Terms: Action Potentials, Animals, Attention, Cues, Macaca mulatta, Macaca radiata, Male, Photic Stimulation, Random Allocation, Reaction Time, Visual Cortex
Show Abstract · Added August 27, 2020
Attending to a visual stimulus increases its detectability, even if gaze is directed elsewhere. This covert attentional selection is known to enhance spiking across many brain areas, including the primary visual cortex (V1). Here we investigate the temporal dynamics of attention-related spiking changes in V1 of macaques performing a task that separates attentional selection from the onset of visual stimulation. We found that preceding attentional enhancement there was a sharp, transient decline in spiking following presentation of an attention-guiding cue. This disruption of V1 spiking was not observed in a task-naïve subject that passively observed the same stimulus sequence, suggesting that sensory activation is insufficient to cause suppression. Following this suppression, attended stimuli evoked more spiking than unattended stimuli, matching previous reports of attention-related activity in V1. Laminar analyses revealed a distinct pattern of activation in feedback-associated layers during both the cue-induced suppression and subsequent attentional enhancement. These findings suggest that top-down modulation of V1 spiking can be bidirectional and result in either suppression or enhancement of spiking responses.
0 Communities
1 Members
0 Resources
MeSH Terms