Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 129

Publication Record

Connections

Genetics of the patent ductus arteriosus (PDA) and pharmacogenetics of PDA treatment.
Lewis TR, Shelton EL, Van Driest SL, Kannankeril PJ, Reese J
(2018) Semin Fetal Neonatal Med 23: 232-238
MeSH Terms: Acetaminophen, Animals, Disease Models, Animal, Ductus Arteriosus, Patent, Genetic Predisposition to Disease, Humans, Ibuprofen, Indomethacin, Infant, Newborn, Infant, Premature, Pharmacogenetics
Show Abstract · Added March 31, 2018
Patent ductus arteriosus (PDA) is a frequent, complex, and difficult to treat clinical syndrome among preterm infants in the neonatal intensive care unit. In addition to known clinical risk factors, there are emerging data about genetic predisposition to PDA in both animal and human models. Clinical response and toxicity from drugs used to treat PDA are highly variable. Developmental and genetic aspects of pharmacokinetics and pharmacodynamics influence exposure and response to pharmacologic therapies. Given the variable efficacy and toxicity of known drug therapies, novel therapeutic targets for PDA treatment offer the promise of precision medicine. This review addresses the known genetic contributions to prolonged ductal patency, variability in response to drug therapy for PDA, and potential novel drug targets for future PDA treatment discovery.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Research Directions in the Clinical Implementation of Pharmacogenomics: An Overview of US Programs and Projects.
Volpi S, Bult CJ, Chisholm RL, Deverka PA, Ginsburg GS, Jacob HJ, Kasapi M, McLeod HL, Roden DM, Williams MS, Green ED, Rodriguez LL, Aronson S, Cavallari LH, Denny JC, Dressler LG, Johnson JA, Klein TE, Leeder JS, Piquette-Miller M, Perera M, Rasmussen-Torvik LJ, Rehm HL, Ritchie MD, Skaar TC, Wagle N, Weinshilboum R, Weitzel KW, Wildin R, Wilson J, Manolio TA, Relling MV
(2018) Clin Pharmacol Ther 103: 778-786
MeSH Terms: Humans, Pharmacogenetics, Precision Medicine, Research, United States
Show Abstract · Added March 14, 2018
Response to a drug often differs widely among individual patients. This variability is frequently observed not only with respect to effective responses but also with adverse drug reactions. Matching patients to the drugs that are most likely to be effective and least likely to cause harm is the goal of effective therapeutics. Pharmacogenomics (PGx) holds the promise of precision medicine through elucidating the genetic determinants responsible for pharmacological outcomes and using them to guide drug selection and dosing. Here we survey the US landscape of research programs in PGx implementation, review current advances and clinical applications of PGx, summarize the obstacles that have hindered PGx implementation, and identify the critical knowledge gaps and possible studies needed to help to address them.
© 2018 American Society for Clinical Pharmacology and Therapeutics.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Benefit of Preemptive Pharmacogenetic Information on Clinical Outcome.
Roden DM, Van Driest SL, Mosley JD, Wells QS, Robinson JR, Denny JC, Peterson JF
(2018) Clin Pharmacol Ther 103: 787-794
MeSH Terms: Drug Prescriptions, Genetic Variation, Genotype, Humans, Pharmacogenetics, Pharmacogenomic Testing
Show Abstract · Added March 14, 2018
The development of new knowledge around the genetic determinants of variable drug action has naturally raised the question of how this new knowledge can be used to improve the outcome of drug therapy. Two broad approaches have been taken: a point-of-care approach in which genotyping for specific variant(s) is undertaken at the time of drug prescription, and a preemptive approach in which multiple genetic variants are typed in an individual patient and the information archived for later use when a drug with a "pharmacogenetic story" is prescribed. This review addresses the current state of implementation, the rationale for these approaches, and barriers that must be overcome. Benefits to pharmacogenetic testing are only now being defined and will be discussed.
© 2018 American Society for Clinical Pharmacology and Therapeutics.
0 Communities
2 Members
0 Resources
6 MeSH Terms
The Influence of Big (Clinical) Data and Genomics on Precision Medicine and Drug Development.
Denny JC, Van Driest SL, Wei WQ, Roden DM
(2018) Clin Pharmacol Ther 103: 409-418
MeSH Terms: Big Data, Drug Repositioning, Electronic Health Records, Humans, Pharmacogenetics, Pharmacology, Clinical, Precision Medicine, Randomized Controlled Trials as Topic
Show Abstract · Added March 14, 2018
Drug development continues to be costly and slow, with medications failing due to lack of efficacy or presence of toxicity. The promise of pharmacogenomic discovery includes tailoring therapeutics based on an individual's genetic makeup, rational drug development, and repurposing medications. Rapid growth of large research cohorts, linked to electronic health record (EHR) data, fuels discovery of new genetic variants predicting drug action, supports Mendelian randomization experiments to show drug efficacy, and suggests new indications for existing medications. New biomedical informatics and machine-learning approaches advance the ability to interpret clinical information, enabling identification of complex phenotypes and subpopulations of patients. We review the recent history of use of "big data" from EHR-based cohorts and biobanks supporting these activities. Future studies using EHR data, other information sources, and new methods will promote a foundation for discovery to more rapidly advance precision medicine.
© 2017 American Society for Clinical Pharmacology and Therapeutics.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Genome-wide and Phenome-wide Approaches to Understand Variable Drug Actions in Electronic Health Records.
Robinson JR, Denny JC, Roden DM, Van Driest SL
(2018) Clin Transl Sci 11: 112-122
MeSH Terms: Biological Variation, Population, Computational Biology, Drug Discovery, Drug Repositioning, Drug-Related Side Effects and Adverse Reactions, Electronic Health Records, Genome, Genome-Wide Association Study, Humans, Molecular Targeted Therapy, Pharmacogenetics, Phenotype, Polymorphism, Single Nucleotide, Treatment Outcome
Added March 14, 2018
0 Communities
2 Members
0 Resources
14 MeSH Terms
Multisite Investigation of Outcomes With Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy After Percutaneous Coronary Intervention.
Cavallari LH, Lee CR, Beitelshees AL, Cooper-DeHoff RM, Duarte JD, Voora D, Kimmel SE, McDonough CW, Gong Y, Dave CV, Pratt VM, Alestock TD, Anderson RD, Alsip J, Ardati AK, Brott BC, Brown L, Chumnumwat S, Clare-Salzler MJ, Coons JC, Denny JC, Dillon C, Elsey AR, Hamadeh IS, Harada S, Hillegass WB, Hines L, Horenstein RB, Howell LA, Jeng LJB, Kelemen MD, Lee YM, Magvanjav O, Montasser M, Nelson DR, Nutescu EA, Nwaba DC, Pakyz RE, Palmer K, Peterson JF, Pollin TI, Quinn AH, Robinson SW, Schub J, Skaar TC, Smith DM, Sriramoju VB, Starostik P, Stys TP, Stevenson JM, Varunok N, Vesely MR, Wake DT, Weck KE, Weitzel KW, Wilke RA, Willig J, Zhao RY, Kreutz RP, Stouffer GA, Empey PE, Limdi NA, Shuldiner AR, Winterstein AG, Johnson JA, IGNITE Network
(2018) JACC Cardiovasc Interv 11: 181-191
MeSH Terms: Aged, Clinical Decision-Making, Clopidogrel, Cytochrome P-450 CYP2C19, Drug Resistance, Female, Humans, Male, Middle Aged, Patient Selection, Percutaneous Coronary Intervention, Pharmacogenetics, Pharmacogenomic Testing, Pharmacogenomic Variants, Platelet Aggregation Inhibitors, Prasugrel Hydrochloride, Predictive Value of Tests, Risk Assessment, Risk Factors, Ticagrelor, Time Factors, Treatment Outcome, United States
Show Abstract · Added March 14, 2018
OBJECTIVES - This multicenter pragmatic investigation assessed outcomes following clinical implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention (PCI).
BACKGROUND - CYP2C19 loss-of-function alleles impair clopidogrel effectiveness after PCI.
METHODS - After clinical genotyping, each institution recommended alternative antiplatelet therapy (prasugrel, ticagrelor) in PCI patients with a loss-of-function allele. Major adverse cardiovascular events (defined as myocardial infarction, stroke, or death) within 12 months of PCI were compared between patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy. Risk was also compared between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy. Cox regression was performed, adjusting for group differences with inverse probability of treatment weights.
RESULTS - Among 1,815 patients, 572 (31.5%) had a loss-of-function allele. The risk for major adverse cardiovascular events was significantly higher in patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy (23.4 vs. 8.7 per 100 patient-years; adjusted hazard ratio: 2.26; 95% confidence interval: 1.18 to 4.32; p = 0.013). Similar results were observed among 1,210 patients with acute coronary syndromes at the time of PCI (adjusted hazard ratio: 2.87; 95% confidence interval: 1.35 to 6.09; p = 0.013). There was no difference in major adverse cardiovascular events between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy (adjusted hazard ratio: 1.14; 95% confidence interval: 0.69 to 1.88; p = 0.60).
CONCLUSIONS - These data from real-world observations demonstrate a higher risk for cardiovascular events in patients with a CYP2C19 loss-of-function allele if clopidogrel versus alternative therapy is prescribed. A future randomized study of genotype-guided antiplatelet therapy may be of value.
Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Integrated analysis of genetic variation and gene expression reveals novel variant for increased warfarin dose requirement in African Americans.
Hernandez W, Gamazon ER, Aquino-Michaels K, Smithberger E, O'Brien TJ, Harralson AF, Tuck M, Barbour A, Cavallari LH, Perera MA
(2017) J Thromb Haemost 15: 735-743
MeSH Terms: Adult, African Americans, Aged, Algorithms, Calcium-Binding Proteins, Cohort Studies, Cytochrome P-450 CYP2C9, Female, Gene Expression Profiling, Gene Expression Regulation, Genetic Variation, Genotype, Humans, Linkage Disequilibrium, Liver, Male, Middle Aged, Pharmacogenetics, Precision Medicine, Quantitative Trait Loci, Thromboembolism, Vitamin K Epoxide Reductases, Warfarin
Show Abstract · Added April 13, 2017
Essentials Genetic variants controlling gene regulation have not been explored in pharmacogenomics. We tested liver expression quantitative trait loci for association with warfarin dose response. A novel predictor for increased warfarin dose response in African Americans was identified. Precision medicine must take into account population-specific variation in gene regulation.
SUMMARY - Background Warfarin is commonly used to control and prevent thromboembolic disorders. However, because of warfarin's complex dose-requirement relationship, safe and effective use is challenging. Pharmacogenomics-guided warfarin dosing algorithms that include the well-established VKORC1 and CYP2C9 polymorphisms explain only a small proportion of inter-individual variability in African Americans (AAs). Objectives We aimed to assess whether transcriptomic analyses could be used to identify regulatory variants associated with warfarin dose response in AAs. Patients/Methods We identified a total of 56 expression quantitative trait loci (eQTLs) for CYP2C9, VKORC1 and CALU derived from human livers and evaluated their association with warfarin dose response in two independent AA warfarin patient cohorts. Results We found that rs4889606, a strong cis-eQTL for VKORC1 (log Bayes Factor = 12.02), is significantly associated with increased warfarin daily dose requirement (β = 1.1; 95% confidence interval [CI] 0.46 to 1.8) in the discovery cohort (n = 305) and in the replication cohort (β = 1.04; 95% CI 0.33 -1.7; n = 141) after conditioning on relevant covariates and the VKORC1 -1639G>A (rs9923231) variant. Inclusion of rs4889606 genotypes, along with CYP2C9 alleles, rs9923231 genotypes and clinical variables, explained 31% of the inter-patient variability in warfarin dose requirement. We demonstrate different linkage disequilibrium patterns in the region encompassing rs4889606 and rs9923231 between AAs and European Americans, which may explain the increased dose requirement found in AAs. Conclusion Our approach of interrogating eQTLs identified in liver has revealed a novel predictor of warfarin dose response in AAs. Our work highlights the utility of leveraging information from regulatory variants mapped in the liver to uncover novel variants associated with drug response and the importance of population-specific research.
© 2017 International Society on Thrombosis and Haemostasis.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Hot Topics in Pharmacogenetics of Age-Related Macular Degeneration.
Schwartz SG, Brantley MA, Kovach JL, Grzybowski A
(2017) Curr Pharm Des 23: 547-550
MeSH Terms: Age Factors, Angiogenesis Inhibitors, Dietary Supplements, Humans, Macular Degeneration, Pharmacogenetics, Vascular Endothelial Growth Factors
Show Abstract · Added February 23, 2017
Age-related macular degeneration (AMD) is a leading cause of irreversible visual loss and is primarily treated with nutritional supplementation as well as with anti-vascular endothelial growth factor (VEGF) agents for certain patients with neovascular disease. AMD is a complex disease with both genetic and environmental risk factors. In addition, treatment outcomes from nutritional supplementation and anti-VEGF agents vary considerably. Therefore, it is reasonable to suspect that there may be pharmacogenetic influences on these treatments. Many series have reported individual associations with variants in complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2), and other loci. However, at this time there are no validated associations. With respect to AMD, pharmacogenetics remains an intriguing area of research but is not helpful for routine clinical management.
Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Genome-wide association study identifies pharmacogenomic loci linked with specific antihypertensive drug treatment and new-onset diabetes.
Chang SW, McDonough CW, Gong Y, Johnson TA, Tsunoda T, Gamazon ER, Perera MA, Takahashi A, Tanaka T, Kubo M, Pepine CJ, Johnson JA, Cooper-DeHoff RM
(2018) Pharmacogenomics J 18: 106-112
MeSH Terms: Adrenergic beta-Antagonists, African Americans, Aged, Alleles, Antihypertensive Agents, Calcium Channel Blockers, Diabetes Mellitus, Female, Follow-Up Studies, Genome-Wide Association Study, Humans, Hypertension, Male, Meta-Analysis as Topic, Middle Aged, Odds Ratio, Pharmacogenetics, Polymorphism, Single Nucleotide, Quantitative Trait Loci
Show Abstract · Added April 13, 2017
We conducted a discovery genome-wide association study with expression quantitative trait loci (eQTL) annotation of new-onset diabetes (NOD) among European Americans, who were exposed to a calcium channel blocker-based strategy (CCB strategy) or a β-blocker-based strategy (β-blocker strategy) in the INternational VErapamil SR Trandolapril STudy. Replication of the top signal from the SNP*treatment interaction analysis was attempted in Hispanic and African Americans, and a joint meta-analysis was performed (total 334 NOD cases and 806 matched controls). PLEKHH2 rs11124945 at 2p21 interacted with antihypertensive exposure for NOD (meta-analysis P=5.3 × 10). rs11124945 G allele carriers had lower odds for NOD when exposed to the β-blocker strategy compared with the CCB strategy (Odds ratio OR=0.38(0.24-0.60), P=4.0 × 10), whereas A/A homozygotes exposed to the β-blocker strategy had increased odds for NOD compared with the CCB strategy (OR=2.02(1.39-2.92), P=2.0 × 10). eQTL annotation of the 2p21 locus provides functional support for regulating gene expression.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Evidence for extensive pleiotropy among pharmacogenes.
Oetjens MT, Bush WS, Denny JC, Birdwell K, Kodaman N, Verma A, Dilks HH, Pendergrass SA, Ritchie MD, Crawford DC
(2016) Pharmacogenomics 17: 853-66
MeSH Terms: Adult, African Americans, Cytochrome P-450 CYP2C19, Female, Genetic Pleiotropy, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Pharmacogenetics, Phenotype, Symporters
Show Abstract · Added March 14, 2018
AIM - We sought to identify potential pleiotropy involving pharmacogenes.
METHODS - We tested 184 functional variants in 34 pharmacogenes for associations using a custom grouping of International Classification and Disease, Ninth Revision billing codes extracted from deidentified electronic health records of 6892 patients.
RESULTS - We replicated several associations including ABCG2 (rs2231142) and gout (p = 1.73 × 10(-7); odds ratio [OR]: 1.73; 95% CI: 1.40-2.12); and SLCO1B1 (rs4149056) and jaundice (p = 2.50 × 10(-4); OR: 1.67; 95% CI: 1.27-2.20).
CONCLUSION - In this systematic screen for phenotypic associations with functional variants, several novel genotype-phenotype combinations also achieved phenome-wide significance, including SLC15A2 rs1143672 and renal osteodystrophy (p = 2.67 × 10(-) (6); OR: 0.61; 95% CI: 0.49-0.75).
0 Communities
1 Members
0 Resources
13 MeSH Terms