Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 13

Publication Record

Connections

Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus.
Klar R, Walker AG, Ghose D, Grueter BA, Engers DW, Hopkins CR, Lindsley CW, Xiang Z, Conn PJ, Niswender CM
(2015) J Neurosci 35: 7600-15
MeSH Terms: Animals, CA1 Region, Hippocampal, CA3 Region, Hippocampal, Channelrhodopsins, Electric Stimulation, Excitatory Amino Acid Agonists, Excitatory Amino Acid Antagonists, Hippocampus, In Vitro Techniques, Inhibitory Postsynaptic Potentials, Interneurons, Long-Term Potentiation, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Models, Biological, Parvalbumins, Patch-Clamp Techniques, Receptors, Metabotropic Glutamate
Show Abstract · Added February 18, 2016
Of the eight metabotropic glutamate (mGlu) receptor subtypes, only mGlu7 is expressed presynaptically at the Schaffer collateral (SC)-CA1 synapse in the hippocampus in adult animals. Coupled with the inhibitory effects of Group III mGlu receptor agonists on transmission at this synapse, mGlu7 is thought to be the predominant autoreceptor responsible for regulating glutamate release at SC terminals. However, the lack of mGlu7-selective pharmacological tools has hampered direct testing of this hypothesis. We used a novel, selective mGlu7-negative allosteric modulator (NAM), ADX71743, and a newly described Group III mGlu receptor agonist, LSP4-2022, to elucidate the role of mGlu7 in modulating transmission in hippocampal area CA1 in adult C57BL/6J male mice. Interestingly, although mGlu7 agonists inhibit SC-CA1 EPSPs, we found no evidence for activation of mGlu7 by stimulation of SC-CA1 afferents. However, LSP4-2022 also reduced evoked monosynaptic IPSCs in CA1 pyramidal cells and, in contrast to its effect on SC-CA1 EPSPs, ADX71743 reversed the ability of high-frequency stimulation of SC afferents to reduce IPSC amplitudes. Furthermore, blockade of mGlu7 prevented induction of LTP at the SC-CA1 synapse and activation of mGlu7 potentiated submaximal LTP. Together, these data suggest that mGlu7 serves as a heteroreceptor at inhibitory synapses in area CA1 and that the predominant effect of activation of mGlu7 by stimulation of glutamatergic afferents is disinhibition, rather than reduced excitatory transmission. Furthermore, this mGlu7-mediated disinhibition is required for induction of LTP at the SC-CA1 synapse, suggesting that mGlu7 could serve as a novel therapeutic target for treatment of cognitive disorders.
Copyright © 2015 the authors 0270-6474/15/357600-16$15.00/0.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes.
Brown JA, Ramikie TS, Schmidt MJ, Báldi R, Garbett K, Everheart MG, Warren LE, Gellért L, Horváth S, Patel S, Mirnics K
(2015) Mol Psychiatry 20: 1499-507
MeSH Terms: Animals, Behavior, Animal, Brain, Disease Models, Animal, Electrophysiology, Exploratory Behavior, Fear, Gene Silencing, Glutamate Decarboxylase, Interneurons, Ketamine, Male, Mice, Mice, Inbred C3H, Mice, Transgenic, Parvalbumins, Receptors, N-Methyl-D-Aspartate, Schizophrenia, Sensory Gating, Synaptic Transmission
Show Abstract · Added February 12, 2015
Reduced expression of the Gad1 gene-encoded 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of schizophrenia. GAD67 downregulation occurs in multiple interneuronal sub-populations, including the parvalbumin-positive (PVALB+) cells. To investigate the role of the PV-positive GABAergic interneurons in behavioral and molecular processes, we knocked down the Gad1 transcript using a microRNA engineered to target specifically Gad1 mRNA under the control of Pvalb bacterial artificial chromosome. Verification of construct expression was performed by immunohistochemistry. Follow-up electrophysiological studies revealed a significant reduction in γ-aminobutyric acid (GABA) release probability without alterations in postsynaptic membrane properties or changes in glutamatergic release probability in the prefrontal cortex pyramidal neurons. Behavioral characterization of our transgenic (Tg) mice uncovered that the Pvalb/Gad1 Tg mice have pronounced sensorimotor gating deficits, increased novelty-seeking and reduced fear extinction. Furthermore, NMDA (N-methyl-d-aspartate) receptor antagonism by ketamine had an opposing dose-dependent effect, suggesting that the differential dosage of ketamine might have divergent effects on behavioral processes. All behavioral studies were validated using a second cohort of animals. Our results suggest that reduction of GABAergic transmission from PVALB+ interneurons primarily impacts behavioral domains related to fear and novelty seeking and that these alterations might be related to the behavioral phenotype observed in schizophrenia.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.
Graham DL, Durai HH, Garden JD, Cohen EL, Echevarria FD, Stanwood GD
(2015) ACS Chem Neurosci 6: 297-305
MeSH Terms: Animals, Cell Count, Depression, Emotions, Female, GABAergic Neurons, Glutamate Decarboxylase, Green Fluorescent Proteins, Gyrus Cinguli, Immunohistochemistry, In Situ Hybridization, Fluorescence, Interneurons, Male, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Neuropsychological Tests, Parvalbumins, Receptors, Dopamine D2
Show Abstract · Added January 20, 2015
Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Deletion of KCC3 in parvalbumin neurons leads to locomotor deficit in a conditional mouse model of peripheral neuropathy associated with agenesis of the corpus callosum.
Ding J, Delpire E
(2014) Behav Brain Res 274: 128-36
MeSH Terms: Agenesis of Corpus Callosum, Analysis of Variance, Animals, Disease Models, Animal, Exploratory Behavior, Ganglia, Spinal, Mice, Mice, Transgenic, Motor Activity, Movement Disorders, Neurons, Parvalbumins, Peripheral Nervous System Diseases, Phosphopyruvate Hydratase, Psychomotor Performance, Reaction Time, Spinal Cord, Symporters
Show Abstract · Added November 25, 2014
Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC or ACCPN) is an autosomal recessive disease caused by the disruption of the SLC12A6 gene, which encodes the K-Cl cotransporter-3 (KCC3). A ubiquitous deletion of KCC3 in mice leads to severe locomotor deficits similar to ACCPN patients. However, the underlying pathological mechanism leading to the disease remains unclear. Even though a recent study suggests that the neuropathic features of ACCPN are mostly due to neuronal loss of KCC3, the specific cell type responsible for the disease is still unknown. Here we established four tissue specific KCC3 knockout mouse lines to explore the cell population origin of ACCPN. Our results showed that the loss of KCC3 in parvalbumin-positive neurons led to significant locomotor deficit, suggesting a crucial role of these neurons in the development of the locomotor deficit. Interestingly, mice in which KCC3 deletion was driven by the neuron-specific enolase (NSE) did not develop any phenotype. Furthermore, we demonstrated that nociceptive neurons targeted with Nav1.8-driven CRE and Schwann cells targeted with a desert hedgehog-driven CRE were not involved in the development of ACCPN. Together, these results establish that the parvalbumin-positive neuronal population is an important player in the pathogenic development of ACCPN.
Copyright © 2014 Elsevier B.V. All rights reserved.
1 Communities
0 Members
0 Resources
18 MeSH Terms
Bipolar disorder type 1 and schizophrenia are accompanied by decreased density of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region.
Wang AY, Lohmann KM, Yang CK, Zimmerman EI, Pantazopoulos H, Herring N, Berretta S, Heckers S, Konradi C
(2011) Acta Neuropathol 122: 615-26
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Autopsy, Bipolar Disorder, Calbindins, Case-Control Studies, Cell Count, Entorhinal Cortex, Female, Hippocampus, Humans, Interneurons, Male, Middle Aged, Nerve Net, Parahippocampal Gyrus, Parvalbumins, S100 Calcium Binding Protein G, Schizophrenia, Somatostatin, Young Adult
Show Abstract · Added May 27, 2014
GABAergic interneurons synchronize network activities and monitor information flow. Post-mortem studies have reported decreased densities of cortical interneurons in schizophrenia (SZ) and bipolar disorder (BPD). The entorhinal cortex (EC) and the adjacent subicular regions are a hub for integration of hippocampal and cortical information, a process that is disrupted in SZ. Here we contrast and compare the density of interneuron populations in the caudal EC and subicular regions in BPD type I (BPD-I), SZ, and normal control (NC) subjects. Post-mortem human parahippocampal specimens of 13 BPD-I, 11 SZ and 17 NC subjects were used to examine the numerical density of parvalbumin-, somatostatin- or calbindin-positive interneurons. We observed a reduction in the numerical density of parvalbumin- and somatostatin-positive interneurons in the caudal EC and parasubiculum in BPD-I and SZ, but no change in the subiculum. Calbindin-positive interneuron densities were normal in all brain areas examined. The profile of decreased density was strikingly similar in BPD-I and SZ. Our results demonstrate a specific reduction of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region in BPD-I and SZ, likely disrupting synchronization and integration of cortico-hippocampal circuits.
0 Communities
2 Members
0 Resources
23 MeSH Terms
Hippocampal interneurons are abnormal in schizophrenia.
Konradi C, Yang CK, Zimmerman EI, Lohmann KM, Gresch P, Pantazopoulos H, Berretta S, Heckers S
(2011) Schizophr Res 131: 165-73
MeSH Terms: Adult, Aged, Aged, 80 and over, Analysis of Variance, Antipsychotic Agents, Case-Control Studies, Cell Count, Female, Gene Expression, Glutamate Decarboxylase, Hippocampus, Humans, Male, Middle Aged, Neurons, Parvalbumins, Schizophrenia, Somatostatin, Young Adult
Show Abstract · Added May 27, 2014
OBJECTIVE - The cellular substrate of hippocampal dysfunction in schizophrenia remains unknown. We tested the hypothesis that hippocampal interneurons are abnormal in schizophrenia, but that the total number of hippocampal neurons in the pyramidal cell layer is normal.
METHODS - We collected whole hippocampal specimens of 13 subjects with schizophrenia and 20 matched healthy control subjects to study the number of all neurons, the somal volume of neurons, the number of somatostatin- and parvalbumin-positive interneurons and the messenger RNA levels of somatostatin, parvalbumin and glutamic acid decarboxylase 67.
RESULTS - The total number of hippocampal neurons in the pyramidal cell layer was normal in schizophrenia, but the number of somatostatin- and parvalbumin-positive interneurons, and the level of somatostatin, parvalbumin and glutamic acid decarboxylase mRNA expression were reduced.
CONCLUSIONS - The study provides strong evidence for a specific defect of hippocampal interneurons in schizophrenia and has implications for emerging models of hippocampal dysfunction in schizophrenia.
Copyright © 2011 Elsevier B.V. All rights reserved.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Hippocampal interneurons in bipolar disorder.
Konradi C, Zimmerman EI, Yang CK, Lohmann KM, Gresch P, Pantazopoulos H, Berretta S, Heckers S
(2011) Arch Gen Psychiatry 68: 340-50
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Atrophy, Bipolar Disorder, Cell Count, Female, Glutamate Decarboxylase, Hippocampus, Humans, Interneurons, Male, Middle Aged, Parvalbumins, Somatostatin
Show Abstract · Added May 27, 2014
CONTEXT - Postmortem studies have reported decreased density and decreased gene expression of hippocampal interneurons in bipolar disorder, but neuroimaging studies of hippocampal volume and function have been inconclusive.
OBJECTIVE - To assess hippocampal volume, neuron number, and interneurons in the same specimens of subjects with bipolar disorder and healthy control subjects.
DESIGN - Whole human hippocampi of 14 subjects with bipolar disorder and 18 healthy control subjects were cut at 2.5-mm intervals and sections from each tissue block were either Nissl-stained or stained with antibodies against somatostatin or parvalbumin. Messenger RNA was extracted from fixed tissue and real-time quantitative polymerase chain reaction was performed.
SETTING - Basic research laboratories at Vanderbilt University and McLean Hospital.
SAMPLES - Brain specimens from the Harvard Brain Tissue Resource Center at McLean Hospital.
MAIN OUTCOME MEASURES - Volume of pyramidal and nonpyramidal cell layers, overall neuron number and size, number of somatostatin- and parvalbumin-positive interneurons, and messenger RNA levels of somatostatin, parvalbumin, and glutamic acid decarboxylase 1.
RESULTS - The 2 groups did not differ in the total number of hippocampal neurons, but the bipolar disorder group showed reduced volume of the nonpyramidal cell layers, reduced somal volume in cornu ammonis sector 2/3, reduced number of somatostatin- and parvalbumin-positive neurons, and reduced messenger RNA levels for somatostatin, parvalbumin, and glutamic acid decarboxylase 1.
CONCLUSION - Our results indicate a specific alteration of hippocampal interneurons in bipolar disorder, likely resulting in hippocampal dysfunction.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Regional and laminar distribution of the vesicular glutamate transporter, VGluT2, in the macaque monkey auditory cortex.
Hackett TA, de la Mothe LA
(2009) J Chem Neuroanat 38: 106-16
MeSH Terms: Animals, Antigens, Nuclear, Auditory Cortex, Auditory Pathways, Axons, Brain Mapping, Fluorescent Antibody Technique, Fluorescent Dyes, Glutamic Acid, Histocytochemistry, Immunohistochemistry, Macaca radiata, Nerve Tissue Proteins, Neurons, Parvalbumins, Synaptic Transmission, Vesicular Glutamate Transport Protein 2
Show Abstract · Added May 19, 2014
The auditory cortex of primates contains 13 areas distributed among 3 hierarchically connected regions: core, belt, and parabelt. Thalamocortical inputs arise in parallel from four divisions of the medial geniculate complex (MGC), which have regionally distinct projection patterns. These inputs terminate in layers IIIb and/or IV, and are assumed to be glutamatergic, although this has not been verified. In the present study, immunoreactivity (-ir) for the vesicular glutamate transporter, VGluT2, was used to estimate the regional and laminar distribution of the glutamatergic thalamocortical projection in the macaque auditory cortex. Coronal sections containing auditory cortex were processed for VGluT2 and other markers concentrated in the thalamorecipient layers: cytochrome oxidase, acetylcholinesterase, and parvalbumin. Marker expression was studied with wide field and confocal microscopy. The main findings were: (1) VGluT2-ir was highest in the core, intermediate in the belt, and sparse in the parabelt; (2) VGluT2-ir was concentrated in the neuropil of layers IIIb/IV in the core and layer IIIb in the belt; (3) VGluT2-ir matched regional and laminar expression of the other chemoarchitectonic markers. The results indicate that the glutamatergic thalamic projection to auditory cortex, as indexed by VGluT2-ir, varies along the core-belt-parabelt axis in a manner that matches the gradients of other markers. These chemoarchitectonic features are likely to subserve regional differences in neuronal activity between regions of auditory cortex.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.
Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA
(2008) Am J Psychiatry 165: 479-89
MeSH Terms: Adult, Aged, Cause of Death, Female, Gene Expression Profiling, Glutamate Decarboxylase, Gyrus Cinguli, Humans, Male, Middle Aged, Motor Cortex, Neocortex, Parvalbumins, Polymerase Chain Reaction, Prefrontal Cortex, Receptors, GABA-A, Schizophrenia, Somatostatin, Synaptic Transmission, Tissue Distribution, gamma-Aminobutyric Acid
Show Abstract · Added May 19, 2014
OBJECTIVE - Individuals with schizophrenia exhibit disturbances in a number of cognitive, affective, sensory, and motor functions that depend on the circuitry of different cortical areas. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related genes. Consequently, the authors sought to determine whether this pattern of altered gene expression is restricted to the dorsolateral prefrontal cortex or could also contribute to the dysfunction of other cortical areas in subjects with schizophrenia.
METHOD - Real-time quantitative polymerase chain reaction was used to assess the levels of eight GABA-related transcripts in four cortical areas (dorsolateral prefrontal cortex, anterior cingulate cortex, and primary motor and primary visual cortices) of subjects (N=12) with schizophrenia and matched normal comparison subjects.
RESULTS - Expression levels of seven transcripts were lower in subjects with schizophrenia, with the magnitude of reduction for each transcript comparable across the four areas. The largest reductions were detected for mRNA encoding somatostatin and parvalbumin, followed by moderate decreases in mRNA expression for the 67-kilodalton isoform of glutamic acid decarboxylase, the GABA membrane transporter GAT-1, and the alpha 1 and delta subunits of GABA(A) receptors. In contrast, the expression of calretinin mRNA did not differ between the subject groups in any of the four areas.
CONCLUSIONS - Because the areas examined represent the major functional domains (e.g., association, limbic, motor, and sensory) of the cerebral cortex, our findings suggest that a conserved set of molecular alterations affecting GABA neurotransmission contribute to the pathophysiology of different clinical features of schizophrenia.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients.
Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD
(2006) Ann Neurol 59: 478-89
MeSH Terms: Aged, Axons, Blotting, Western, Demyelinating Diseases, Electron Transport Chain Complex Proteins, Female, Glutamate Decarboxylase, Humans, Immunohistochemistry, In Situ Hybridization, Isoenzymes, Male, Microarray Analysis, Microscopy, Electron, Transmission, Middle Aged, Mitochondrial Diseases, Multiple Sclerosis, Nerve Degeneration, Neurofilament Proteins, Parvalbumins, Postmortem Changes, RNA, Messenger, Receptors, GABA-A, Reverse Transcriptase Polymerase Chain Reaction, Spinal Cord
Show Abstract · Added May 19, 2014
OBJECTIVE - Degeneration of chronically demyelinated axons is a major cause of irreversible neurological disability in multiple sclerosis (MS) patients. Development of neuroprotective therapies will require elucidation of the molecular mechanisms by which neurons and axons degenerate.
METHODS - We report ultrastructural changes that support Ca2+-mediated destruction of chronically demyelinated axons in MS patients. We compared expression levels of 33,000 characterized genes in postmortem motor cortex from six control and six MS brains matched for age, sex, and postmortem interval. As reduced energy production is a major contributor to Ca2+-mediated axonal degeneration, we focused on changes in oxidative phosphorylation and inhibitory neurotransmission.
RESULTS - Compared with controls, 488 transcripts were decreased and 67 were increased (p < 0.05, 1.5-fold) in the MS cortex. Twenty-six nuclear-encoded mitochondrial genes and the functional activities of mitochondrial respiratory chain complexes I and III were decreased in the MS motor cortex. Reduced mitochondrial gene expression was specific for neurons. In addition, pre-synaptic and postsynaptic components of GABAergic neurotransmission and the density of inhibitory interneuron processes also were decreased in the MS cortex.
INTERPRETATION - Our data supports a mechanism whereby reduced ATP production in demyelinated segments of upper motor neuron axons impacts ion homeostasis, induces Ca2+-mediated axonal degeneration, and contributes to progressive neurological disability in MS patients.
0 Communities
1 Members
0 Resources
25 MeSH Terms