Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 56

Publication Record

Connections

Mechanistic insight into the interaction of gastrointestinal mucus with oral diblock copolymers synthesized via ATRP method.
Liu J, Cao J, Cao J, Han S, Liang Y, Bai M, Sun Y
(2018) Int J Nanomedicine 13: 2839-2856
MeSH Terms: Administration, Oral, Animals, Caco-2 Cells, Drug Carriers, Humans, Hydrophobic and Hydrophilic Interactions, Indoles, Intestinal Absorption, Intestinal Mucosa, Male, Methacrylates, Methylmethacrylates, Mice, Nanoparticles, Nylons, Particle Size, Polymers, Propionates, Tissue Distribution
Show Abstract · Added April 2, 2019
Introduction - Nanoparticles are increasingly used as drug carriers for oral administration. The delivery of drug molecules is largely dependent on the interaction of nanocarriers and gastrointestinal (GI) mucus, a critical barrier that regulates drug absorption. It is therefore important to understand the effects of physical and chemical properties of nanocarriers on the interaction with GI mucus. Unfortunately, most of the nanoparticles are unable to be prepared with satisfactory structural monodispersity to comprehensively investigate the interaction. With controlled size, shape, and surface chemistry, copolymers are ideal candidates for such purpose.
Materials and methods - We synthesized a series of diblock copolymers via the atom transfer radical polymerization method and investigated the GI mucus permeability in vitro and in vivo.
Results - Our results indicated that uncharged and hydrophobic copolymers exhibited enhanced GI absorption.
Conclusion - These results provide insights into developing optimal nanocarriers for oral administration.
0 Communities
1 Members
0 Resources
MeSH Terms
Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.
Fernando LP, Lewis JS, Evans BC, Duvall CL, Keselowsky BG
(2018) J Biomed Mater Res A 106: 1022-1033
MeSH Terms: Acrylic Resins, Animals, CHO Cells, Cell Death, Cell Membrane, Cricetinae, Cricetulus, Cytosol, Dendritic Cells, Endocytosis, Endosomes, Humans, Hydrogen-Ion Concentration, Mice, Inbred C57BL, Microspheres, Particle Size, Polylactic Acid-Polyglycolic Acid Copolymer, Proton Magnetic Resonance Spectroscopy
Show Abstract · Added March 14, 2018
Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018.
© 2017 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Dodecyl-β-melibioside Detergent Micelles as a Medium for Membrane Proteins.
Hutchison JM, Lu Z, Li GC, Travis B, Mittal R, Deatherage CL, Sanders CR
(2017) Biochemistry 56: 5481-5484
MeSH Terms: Amyloid beta-Protein Precursor, Detergents, Diacylglycerol Kinase, Disaccharides, Dynamic Light Scattering, Enzyme Stability, Escherichia coli Proteins, Glucosides, Glycolipids, Hot Temperature, Humans, Micelles, Myelin Proteins, Nuclear Magnetic Resonance, Biomolecular, Particle Size, Peptide Fragments, Protein Interaction Domains and Motifs, Protein Stability, Receptor, Notch1
Show Abstract · Added November 21, 2018
There remains a need for new non-ionic detergents that are suitable for use in biochemical and biophysical studies of membrane proteins. Here we explore the properties of n-dodecyl-β-melibioside (β-DDMB) micelles as a medium for membrane proteins. Melibiose is d-galactose-α(1→6)-d-glucose. Light scattering showed the β-DDMB micelle to be roughly 30 kDa smaller than micelles formed by the commonly used n-dodecyl-β-maltoside (β-DDM). β-DDMB stabilized diacylglycerol kinase (DAGK) against thermal inactivation. Moreover, activity assays conducted using aliquots of DAGK purified into β-DDMB yielded activities that were 40% higher than those of DAGK purified into β-DDM. β-DDMB yielded similar or better TROSY-HSQC NMR spectra for two single-pass membrane proteins and the tetraspan membrane protein peripheral myelin protein 22. β-DDMB appears be a useful addition to the toolbox of non-ionic detergents available for membrane protein research.
0 Communities
1 Members
0 Resources
MeSH Terms
Flow-Through Porous Silicon Membranes for Real-Time Label-Free Biosensing.
Zhao Y, Gaur G, Retterer ST, Laibinis PE, Weiss SM
(2016) Anal Chem 88: 10940-10948
MeSH Terms: Biosensing Techniques, Microfluidic Analytical Techniques, Particle Size, Porosity, Silicon, Surface Properties, Time Factors
Show Abstract · Added April 27, 2017
A flow-through sensing platform based on open-ended porous silicon (PSi) microcavity membranes that are compatible with integration in on-chip sensor arrays is demonstrated. Because of the high aspect ratio of PSi nanopores, the performance of closed-ended PSi sensors is limited by infiltration challenges and slow sensor responses when detecting large molecules such as proteins and nucleic acids. In order to improve molecule transport efficiency and reduce sensor response time, open-ended PSi nanopore membranes were used in a flow-through sensing scheme, allowing analyte solutions to pass through the nanopores. The molecular binding kinetics in these PSi membranes were compared through experiments and simulation with those from closed-ended PSi films of comparable thickness in a conventional flow-over sensing scheme. The flow-through PSi membrane resulted in a 6-fold improvement in sensor response time when detecting a high molecular weight analyte (streptavidin) versus in the flow-over PSi approach. This work demonstrates the possibility of integrating multiple flow-through PSi sensor membranes within parallel microarrays for rapid and multiplexed label-free biosensing.
0 Communities
1 Members
0 Resources
7 MeSH Terms
The Ste20 kinases SPAK and OSR1 travel between cells through exosomes.
Koumangoye R, Delpire E
(2016) Am J Physiol Cell Physiol 311: C43-53
MeSH Terms: Cell Communication, Cell Membrane, Coculture Techniques, Culture Media, Conditioned, Exosomes, HEK293 Cells, HeLa Cells, Humans, Luminescent Proteins, Microscopy, Fluorescence, Particle Size, Phosphorylation, Protein Transport, Protein-Serine-Threonine Kinases, Recombinant Proteins, Solute Carrier Family 12, Member 2, Tetraspanin 30, Time Factors, Transfection
Show Abstract · Added May 3, 2017
Proteomics studies have identified Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1) in exosomes isolated from body fluids such as blood, saliva, and urine. Because proteomics studies likely overestimate the number of exosome proteins, we sought to confirm and extend this observation using traditional biochemical and cell biology methods. We utilized HEK293 cells in culture to verify the packaging of these Ste20 kinases in exosomes. Using a series of centrifugation and filtration steps of conditioned culture medium isolated from HEK293 cells, we isolated nanovesicles in the range of 40-100 nm. We show that these small vesicles express the tetraspanin protein CD63 and lack endoplasmic reticulum and Golgi markers, consistent with these being exosomes. We show by Western blot and immunogold analyses that these exosomes express SPAK, OSR1, and Na-K-Cl cotransporter 1 (NKCC1). We show that exosomes are not only secreted by cells, but also accumulated by adjacent cells. Indeed, exposing cultured cells to exosomes produced by other cells expressing a fluorescently labeled kinase resulted in the kinase finding its way into the cytoplasm of these cells, consistent with the idea of exosomes serving as cell-to-cell communication vessels. Similarly, coculturing cells expressing different fluorescently tagged proteins resulted in the exchange of proteins between cells. In addition, we show that both SPAK and OSR1 kinases entering cells through exosomes are preferentially expressed at the plasma membrane and that the kinases in exosomes are functional and maintain NKCC1 in a phosphorylated state.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
19 MeSH Terms
High conversion of HAuCl4 into gold nanorods: A re-seeding approach.
Canonico-May SA, Beavers KR, Melvin MJ, Alkilany AM, Duvall CL, Stone JW
(2016) J Colloid Interface Sci 463: 229-32
MeSH Terms: Chlorides, Gold, Gold Compounds, Nanotubes, Particle Size, Spectrum Analysis, Raman, Surface Properties, Surface-Active Agents
Show Abstract · Added March 14, 2018
Gold nanorods with varying aspect ratios have been utilized in recent years for a wide range of applications including vaccines, surface enhanced Raman spectroscopy (SERS) substrates, and as medicinal therapeutic agents. The surfactant-directed seed mediated approach is an aqueous based protocol that produces monodisperse nanorods with controlled aspect ratios. However, an inherent problem with this approach is poor efficiency of gold conversion from HAuCl4 into nanorods. In fact only ∼15% of gold is converted, motivating the need for alternate synthetic protocols in order to make the process more scalable and efficient as gold nanorods progress toward commercial applications. In the current study, we have significantly improved this conversion by growing rods in several iterations of supernatant solutions that were previously discarded as waste. Inductively coupled plasma mass spectrometry (ICP-MS) data indicates ∼14% gold conversion per nanorod solution with a total recovery of ∼75%. Gold nanorods prepared in consecutive supernatant solutions generally have slightly increased aspect ratios and maintain stability and monodispersity as measured by UV-vis and TEM. The increased nanorod yield minimizes gold waste and results in a greener synthetic approach.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Dual drug delivery of tamoxifen and quercetin: Regulated metabolism for anticancer treatment with nanosponges.
Lockhart JN, Stevens DM, Beezer DB, Kravitz A, Harth E
(2015) J Control Release 220: 751-7
MeSH Terms: Animals, Antineoplastic Combined Chemotherapy Protocols, Biological Availability, Biotransformation, Breast Neoplasms, Cell Line, Tumor, Cell Survival, Chemistry, Pharmaceutical, Cross-Linking Reagents, Cytochrome P-450 CYP3A, Delayed-Action Preparations, Dose-Response Relationship, Drug, Drug Carriers, Drug Stability, Female, Gastric Juice, Glucuronosyltransferase, Intestinal Secretions, Kinetics, Mice, Nanomedicine, Nanoparticles, Particle Size, Polyesters, Quercetin, Solubility, Tamoxifen
Show Abstract · Added February 15, 2016
We report the synthesis and encapsulation of polyester nanosponge particles (NPs) co-loaded with tamoxifen (TAM) and quercetin (QT) to investigate the loading, release and in vitro metabolism of a dual drug formulation. The NPs are made in two variations, 4% and 8% crosslinking densities, to evaluate the effects on metabolism and release kinetics. The NP-4% formulation with a particle size of 89.3 ± 14.8 nm was found to have loading percentages of 6.91 ± 0.13% TAM and 7.72 ± 0.15% QT after targeting 10% (w/w) each. The NP-8% formulation with a particle size of 91.5 ± 9.8 nm was found to have loading percentages of 7.26 ± 0.10% TAM and 7.80 ± 0.12% QT. The stability of the formulation was established in simulated gastrointestinal fluids, and the metabolism of TAM was shown to be reduced 2-fold and 3-fold for NP-4%s and NP-8%s, respectively, while QT metabolism was reduced 3 and 4-fold. The implications for improved bioavailability of the NP formulations were supported by cytotoxicity results that showed a similar efficacy to free dual drug formulations and even enhanced anti-cancer effects in the recovery condition. This work demonstrates the suitability of the nanosponges not only as a dual release drug delivery system but also enabling a regulated metabolism through the capacity of a nanonetwork. The variation in crosslinking enables a dual release with tailored release kinetics and suggests improved bioavailability aided by a reduced metabolism.
Copyright © 2015 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
27 MeSH Terms
Effects of particle size and porosity on in vivo remodeling of settable allograft bone/polymer composites.
Prieto EM, Talley AD, Gould NR, Zienkiewicz KJ, Drapeau SJ, Kalpakci KN, Guelcher SA
(2015) J Biomed Mater Res B Appl Biomater 103: 1641-51
MeSH Terms: Allografts, Animals, Bone Remodeling, Bone Transplantation, Calcification, Physiologic, Femur, Particle Size, Polyurethanes, Porosity, Rats
Show Abstract · Added February 23, 2016
Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity and high viscosity grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105-500 μm) allograft particles healed at 12 weeks postimplantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds.
© 2015 Wiley Periodicals, Inc.
1 Communities
1 Members
0 Resources
10 MeSH Terms
ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease.
Poole KM, Nelson CE, Joshi RV, Martin JR, Gupta MK, Haws SC, Kavanaugh TE, Skala MC, Duvall CL
(2015) Biomaterials 41: 166-75
MeSH Terms: Animals, Antioxidants, Cell Survival, Chemokine CCL2, Curcumin, Diabetes Mellitus, Experimental, Endocytosis, Female, Hindlimb, Hydrogen Peroxide, Interferon-gamma, Intracellular Space, Ischemia, Kinetics, Lipopolysaccharides, Macrophage Activation, Mice, Microspheres, Muscles, NIH 3T3 Cells, Oxygen, Particle Size, Perfusion, Peripheral Arterial Disease, Polymers, Reactive Oxygen Species, Sulfides
Show Abstract · Added January 20, 2015
A new microparticle-based delivery system was synthesized from reactive oxygen species (ROS)-responsive poly(propylene sulfide) (PPS) and tested for "on demand" antioxidant therapy. PPS is hydrophobic but undergoes a phase change to become hydrophilic upon oxidation and thus provides a useful platform for ROS-demanded drug release. This platform was tested for delivery of the promising anti-inflammatory and antioxidant therapeutic molecule curcumin, which is currently limited in use in its free form due to poor pharmacokinetic properties. PPS microspheres efficiently encapsulated curcumin through oil-in-water emulsion and provided sustained, on demand release that was modulated in vitro by hydrogen peroxide concentration. The cytocompatible, curcumin-loaded microspheres preferentially targeted and scavenged intracellular ROS in activated macrophages, reduced in vitro cell death in the presence of cytotoxic levels of ROS, and decreased tissue-level ROS in vivo in the diabetic mouse hind limb ischemia model of peripheral arterial disease. Interestingly, due to the ROS scavenging behavior of PPS, the blank microparticles also showed inherent therapeutic properties that were synergistic with the effects of curcumin in these assays. Functionally, local delivery of curcumin-PPS microspheres accelerated recovery from hind limb ischemia in diabetic mice, as demonstrated using non-invasive imaging techniques. This work demonstrates the potential for PPS microspheres as a generalizable vehicle for ROS-demanded drug release and establishes the utility of this platform for improving local curcumin bioavailability for treatment of chronic inflammatory diseases.
Copyright © 2014 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
27 MeSH Terms
Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers.
Miteva M, Kirkbride KC, Kilchrist KV, Werfel TA, Li H, Nelson CE, Gupta MK, Giorgio TD, Duvall CL
(2015) Biomaterials 38: 97-107
MeSH Terms: Animals, Diffusion, Drug Compounding, Humans, Methacrylates, Mice, Mice, Inbred BALB C, Micelles, Nanocapsules, Particle Size, Polyethylene Glycols, RNA, Small Interfering, Subcellular Fractions
Show Abstract · Added March 14, 2018
A series of endosomolytic mixed micelles was synthesized from two diblock polymers, poly[ethylene glycol-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (PEG-b-pDPB) and poly[dimethylaminoethyl methacrylate-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (pD-b-pDPB), and used to determine the impact of both surface PEG density and PEG molecular weight on overcoming both intracellular and systemic siRNA delivery barriers. As expected, the percent PEG composition and PEG molecular weight in the corona had an inverse relationship with mixed micelle zeta potential and rate of cellular internalization. Although mixed micelles were internalized more slowly, they generally produced similar gene silencing bioactivity (∼ 80% or greater) in MDA-MB-231 breast cancer cells as the micelles containing no PEG (100 D/no PEG). The mechanistic explanation for the potent bioactivity of the promising 50 mol% PEG-b-DPB/50 mol% pD-b-pDPB (50 D) mixed micelle formulation, despite its relatively low rate of cellular internalization, was further investigated as a function of PEG molecular weight (5 k, 10 k, or 20 k PEG). Results indicated that, although larger molecular weight PEG decreased cellular internalization, it improved cytoplasmic bioavailability due to increased intracellular unpackaging (quantitatively measured via FRET) and endosomal release. When delivered intravenously in vivo, 50 D mixed micelles with a larger molecular weight PEG in the corona also demonstrated significantly improved blood circulation half-life (17.8 min for 20 k PEG micelles vs. 4.6 min for 5 kDa PEG micelles) and a 4-fold decrease in lung accumulation. These studies provide new mechanistic insights into the functional effects of mixed micelle-based approaches to nanocarrier surface PEGylation. Furthermore, the ideal mixed micelle formulation identified (50 D/20 k PEG) demonstrated desirable intracellular and systemic pharmacokinetics and thus has strong potential for in vivo therapeutic use.
Copyright © 2014 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms