Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 15

Publication Record

Connections

Glutamate-oxaloacetate transaminase activity promotes palmitate lipotoxicity in rat hepatocytes by enhancing anaplerosis and citric acid cycle flux.
Egnatchik RA, Leamy AK, Sacco SA, Cheah YE, Shiota M, Young JD
(2019) J Biol Chem 294: 3081-3090
MeSH Terms: Animals, Aspartate Aminotransferases, Cell Death, Cell Line, Citric Acid Cycle, Extracellular Space, Glutamine, Hepatocytes, Ketoglutaric Acids, Male, Oxidative Stress, Oxygen, Palmitates, Rats, Rats, Sprague-Dawley
Show Abstract · Added March 28, 2019
Hepatocyte lipotoxicity is characterized by aberrant mitochondrial metabolism, which predisposes cells to oxidative stress and apoptosis. Previously, we reported that translocation of calcium from the endoplasmic reticulum to mitochondria of palmitate-treated hepatocytes activates anaplerotic flux from glutamine to α-ketoglutarate (αKG), which subsequently enters the citric acid cycle (CAC) for oxidation. We hypothesized that increased glutamine anaplerosis fuels elevations in CAC flux and oxidative stress following palmitate treatment. To test this hypothesis, primary rat hepatocytes or immortalized H4IIEC3 rat hepatoma cells were treated with lipotoxic levels of palmitate while modulating anaplerotic pathways leading to αKG. We found that culture media supplemented with glutamine, glutamate, or dimethyl-αKG increased palmitate lipotoxicity compared with media that lacked these anaplerotic substrates. Knockdown of glutamate-oxaloacetate transaminase activity significantly reduced the lipotoxic effects of palmitate, whereas knockdown of glutamate dehydrogenase (Glud1) had no effect on palmitate lipotoxicity. C flux analysis of H4IIEC3 cells co-treated with palmitate and the pan-transaminase inhibitor aminooxyacetic acid confirmed that reductions in lipotoxic markers were associated with decreases in anaplerosis, CAC flux, and oxygen consumption. Taken together, these results demonstrate that lipotoxic palmitate treatments enhance anaplerosis in cultured rat hepatocytes, causing a shift to aberrant transaminase metabolism that fuels CAC dysregulation and oxidative stress.
© 2019 Egnatchik et al.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Proteomic Analysis of S-Palmitoylated Proteins in Ocular Lens Reveals Palmitoylation of AQP5 and MP20.
Wang Z, Schey KL
(2018) Invest Ophthalmol Vis Sci 59: 5648-5658
MeSH Terms: Animals, Aquaporin 5, Blotting, Western, Cattle, Chromatography, Liquid, Electrophoresis, Polyacrylamide Gel, Eye Proteins, Immunoblotting, Lens, Crystalline, Lipoylation, Membrane Proteins, Palmitates, Proteomics, Tandem Mass Spectrometry
Show Abstract · Added April 4, 2019
Purpose - The purpose of this study was to characterize the palmitoyl-proteome in lens fiber cells. S-palmitoylation is the most common form of protein S-acylation and the reversible nature of this modification functions as a molecular switch to regulate many biological processes. This modification could play important roles in regulating protein functions and protein-protein interactions in the lens.
Methods - The palmitoyl-proteome of bovine lens fiber cells was investigated by combining acyl-biotin exchange (ABE) chemistry and mass-spectrometry analysis. Due to the possibility of false-positive results from ABE experiment, a method was also developed for direct detection of palmitoylated peptides by mass spectrometry for validating palmitoylation of lens proteins MP20 and AQP5. Palmitoylation levels on AQP5 in different regions of the lens were quantified after iodoacetamide (IAA)-palmitate exchange.
Results - The ABE experiment identified 174 potential palmitoylated proteins. These proteins include 39 well-characterized palmitoylated proteins, 92 previously reported palmitoylated proteins in other tissues, and 43 newly identified potential palmitoylated proteins including two important transmembrane proteins in the lens, AQP5 and MP20. Further analysis by direct detection of palmitoylated peptides confirmed palmitoylation of AQP5 on C6 and palmitoylation of MP20 on C159. Palmitoylation of AQP5 was found to only occur in a narrow region of the inner lens cortex and does not occur in the lens epithelium, in the lens outer cortex, or in the lens nucleus.
Conclusions - AQP5 and MP20 are among 174 palmitoylated proteins found in bovine lens fiber cells. This modification to AQP5 and MP20 may play a role in their translocation from the cytoplasm to cell membranes during fiber cell differentiation.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes.
Egnatchik RA, Leamy AK, Noguchi Y, Shiota M, Young JD
(2014) Metabolism 63: 283-95
MeSH Terms: Acetylcysteine, Animals, Antioxidants, Apoptosis, Carbon Isotopes, Carcinoma, Hepatocellular, Caspases, Effector, Cell Line, Tumor, Enzyme Activation, Hepatocytes, Liver Neoplasms, Metabolic Flux Analysis, Mitochondria, Liver, Oxidative Stress, Palmitates, Rats, Reactive Oxygen Species
Show Abstract · Added January 23, 2015
OBJECTIVE - Hepatic lipotoxicity is characterized by reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and excessive apoptosis, but the precise sequence of biochemical events leading to oxidative damage and cell death remains unclear. The goal of this study was to delineate the role of mitochondrial metabolism in mediating hepatocyte lipotoxicity.
MATERIALS/METHODS - We treated H4IIEC3 rat hepatoma cells with free fatty acids in combination with antioxidants and mitochondrial inhibitors designed to block key events in the progression toward apoptosis. We then applied (13)C metabolic flux analysis (MFA) to quantify mitochondrial pathway alterations associated with these treatments.
RESULTS - Treatment with palmitate alone led to a doubling in oxygen uptake rate and in most mitochondrial fluxes. Supplementing culture media with the antioxidant N-acetyl-cysteine (NAC) reduced ROS accumulation and caspase activation and partially restored cell viability. However, (13)C MFA revealed that treatment with NAC did not normalize palmitate-induced metabolic alterations, indicating that neither elevated ROS nor downstream apoptotic events contributed to mitochondrial activation. To directly limit mitochondrial metabolism, the complex I inhibitor phenformin was added to cells treated with palmitate. Phenformin addition eliminated abnormal ROS accumulation, prevented the appearance of apoptotic markers, and normalized mitochondrial carbon flow. Further studies revealed that glutamine provided the primary fuel for elevated mitochondrial metabolism in the presence of palmitate, rather than fatty acid beta-oxidation, and that glutamine consumption could be reduced through co-treatment with phenformin but not NAC.
CONCLUSION - Our results indicate that ROS accumulation in palmitate-treated H4IIEC3 cells occurs downstream of altered mitochondrial oxidative metabolism, which is independent of beta-oxidation and precedes apoptosis initiation.
© 2014.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Tracking cellular metabolomics in lipoapoptosis- and steatosis-developing liver cells.
Noguchi Y, Young JD, Aleman JO, Hansen ME, Kelleher JK, Stephanopoulos G
(2011) Mol Biosyst 7: 1409-19
MeSH Terms: Animals, Apoptosis, Carcinoma, Hepatocellular, Cell Line, Tumor, Citric Acid Cycle, Fatty Liver, Gas Chromatography-Mass Spectrometry, Glycolysis, Liver Neoplasms, Metabolome, Metabolomics, Oleic Acid, Palmitates, Pentose Phosphate Pathway, Rats, Reactive Oxygen Species, Signal Transduction
Show Abstract · Added January 23, 2015
Palmitate (PA) is known to induce reactive oxygen species (ROS) formation and apoptosis in liver cells, whereas concurrent treatment of oleate (OA) with PA predominately induces steatosis without ROS in liver cells. We previously reported that PA treatment induces the decoupling of glycolysis and tricarboxylic acid cycle (TCA cycle) fluxes, but OA co-treatment restored most metabolic fluxes to their control levels. However, the mechanisms by which metabolites are linked to metabolic fluxes and subsequent lipoapoptotic or steatotic phenotypes remain unclear. To determine the link, we used GC-MS-based polar and non-polar metabolic profiling in lipoapoptosis- or steatosis-developing H4IIEC3 hepatoma cells, to examine the metabolome at different time points after treatment with either PA alone (PA cells) or both PA and OA (PA/OA cells). Metabolic profiles revealed various changes in metabolite levels for TCA cycle intermediates, pentose phosphate pathway (PPP) intermediates, and energy storage metabolites between PA and PA/OA cells. For example, adenosine was markedly increased only in PA cells, whereas gluconate was increased in PA/OA cells. To assess the interaction among these metabolites, the metabolite-to-metabolite correlations were calculated and correlation networks were visualized. These correlation networks demonstrate that a dissociation among PPP metabolites was introduced in PA-treated cells, and this dissociation was restored in PA/OA-treated cells. Thus, our data suggest that abnormal PPP fluxes, in addition to increased adenosine levels, might be related to the decoupling of glycolysis and the resulting lipoapoptotic phenotype.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Abnormal metabolism flexibility in response to high palmitate concentrations in myotubes derived from obese type 2 diabetic patients.
Kitzmann M, Lantier L, Hébrard S, Mercier J, Foretz M, Aguer C
(2011) Biochim Biophys Acta 1812: 423-30
MeSH Terms: AMP-Activated Protein Kinases, Acetyl-CoA Carboxylase, Aminoimidazole Carboxamide, Cells, Cultured, Diabetes Mellitus, Type 2, Humans, Hypoglycemic Agents, Lipid Metabolism, Metformin, Middle Aged, Mitochondria, Muscle Fibers, Skeletal, Obesity, Oxidation-Reduction, Palmitates, Phosphorylation, Quadriceps Muscle, Ribonucleotides
Show Abstract · Added March 4, 2013
Insulin resistance in type 2 diabetes (T2D) is associated with intramuscular lipid (IMCL) accumulation. To determine whether impaired lipid oxidation is involved in IMCL accumulation, we measured expression of genes involved in mitochondrial oxidative metabolism or biogenesis, mitochondrial content and palmitate beta-oxidation before and after palmitate overload (600μM for 16h), in myotubes derived from healthy subjects and obese T2D patients. Mitochondrial gene expression, content and network were not different between groups. Basal palmitate beta-oxidation was not affected in T2D myotubes, whereas after 16h of palmitate pre-treatment, T2D myotubes in contrast to control myotubes, showed an inability to increase palmitate beta-oxidation (p<0.05). Interestingly, acetyl-CoA carboxylase (ACC) phosphorylation was increased with a tendency for statistical significance after palmitate pre-treatment in control myotubes (p=0.06) but not in T2D myotubes which can explain their inability to increase palmitate beta-oxidation after palmitate overload. To determine whether the activation of the AMP activated protein kinase (AMPK)-ACC pathway was able to decrease lipid content in T2D myotubes, cells were treated with AICAR and metformin. These AMPK activators had no effect on ACC and AMPK phosphorylation in T2D myotubes as well as on lipid content, whereas AICAR, but not metformin, increased AMPK phosphorylation in control myotubes. Interestingly, metformin treatment and mitochondrial inhibition by antimycin induced increased lipid content in control myotubes. We conclude that T2D myotubes display an impaired capacity to respond to metabolic stimuli.
Copyright © 2010 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis.
Noguchi Y, Young JD, Aleman JO, Hansen ME, Kelleher JK, Stephanopoulos G
(2009) J Biol Chem 284: 33425-36
MeSH Terms: Amino Acids, Animals, Apoptosis, Cell Line, Tumor, Ceramides, Cytosol, Dose-Response Relationship, Drug, Fatty Acids, Nonesterified, Gas Chromatography-Mass Spectrometry, Glutamine, Glycolysis, Humans, L-Lactate Dehydrogenase, Liver, Oleic Acid, Oxidation-Reduction, Palmitates, Rats, Reactive Oxygen Species
Show Abstract · Added January 23, 2015
To identify metabolic pathways involved in hepatic lipoapoptosis, metabolic flux analysis using [U-(13)C(5)]glutamine as an isotopic tracer was applied to quantify phenotypic changes in H4IIEC3 hepatoma cells treated with either palmitate alone (PA-cells) or both palmitate and oleate in combination (PA/OA-cells). Our results indicate that palmitate inhibited glycolysis and lactate dehydrogenase fluxes while activating citric acid cycle (CAC) flux and glutamine uptake. This decoupling of glycolysis and CAC fluxes occurred during the period following palmitate exposure but preceding the onset of apoptosis. Oleate co-treatment restored most fluxes to their control levels, resulting in steatotic lipid accumulation while preventing apoptosis. In addition, palmitate strongly increased the cytosolic NAD(+)/NADH ratio, whereas oleate co-treatment had the opposite effect on cellular redox. We next examined the influence of amino acids on these free fatty acid-induced phenotypic changes. Increased medium amino acids enhanced reactive oxygen species (ROS) generation and apoptosis in PA-cells but not in PA/OA-cells. Overloading the medium with non-essential amino acids induced apoptosis, but essential amino acid overloading partially ameliorated apoptosis. Glutamate was the most effective single amino acid in promoting ROS. Amino acid overloading also increased cellular palmitoyl-ceramide; however, ceramide synthesis inhibitors had no effect on measurable indicators of apoptosis. Our results indicate that free fatty acid-induced ROS generation and apoptosis are accompanied by the decoupling of glycolysis and CAC fluxes leading to abnormal cytosolic redox states. Amino acids play a modulatory role in these processes via a mechanism that does not involve ceramide accumulation.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Palmitate alters neuregulin signaling and biology in cardiac myocytes.
Miller TA, Icli B, Cote GM, Lebrasseur NK, Borkan SC, Pimentel DR, Peng X, Sawyer DB
(2009) Biochem Biophys Res Commun 379: 32-7
MeSH Terms: Animals, Apoptosis, Cells, Cultured, Humans, Myocytes, Cardiac, Nerve Tissue Proteins, Neuregulin-1, Palmitates, Phosphatidylinositol 3-Kinases, Proto-Oncogene Proteins c-akt, Rats, Rats, Sprague-Dawley, Recombinant Proteins, Signal Transduction, Tumor Suppressor Protein p53
Show Abstract · Added May 28, 2014
The saturated fatty acid palmitate alters normal cell function via disruption of cell signaling, and this effect has been implicated in the end-organ damage associated with dyslipidemia. Neuregulin-1beta (NRG-1beta) is a growth and survival factor in cardiac myocytes. We tested the hypothesis that palmitate alters NRG-1beta signaling and biology in isolated neonatal rat cardiac myocytes. Palmitate treatment inhibited NRG-1beta activation of the PI3-kinase/Akt pathway in myocytes. We found that the pro-apoptotic activity of palmitate was increased by NRG-1beta treatment. The effects of palmitate on NRG-1beta signaling and survival were reversed by the mono-unsaturated fatty acid oleate. Under control conditions NRG-1beta decreases p53 expression in myocytes. In the presence of palmitate, NRG-1beta caused an increase in p53 expression, bax multimer formation, concurrent with degradation of mdm2, a negative regulator of p53. Thus in the presence of palmitate NRG-1beta activates pro-apoptotic, rather than pro-survival signaling in cardiac myocytes.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Long chain fatty acid uptake in vivo: comparison of [125I]-BMIPP and [3H]-bromopalmitate.
Shearer J, Coenen KR, Pencek RR, Swift LL, Wasserman DH, Rottman JN
(2008) Lipids 43: 703-11
MeSH Terms: Animals, Bromine Compounds, Fatty Acids, Iodine Radioisotopes, Iodobenzenes, Male, Organ Specificity, Palmitates, Rats, Rats, Sprague-Dawley, Tritium
Show Abstract · Added December 10, 2013
Insulin resistance is characterized by increased metabolic uptake of fatty acids. Accordingly, techniques to examine in vivo shifts in fatty acid metabolism are of value in both clinical and experimental settings. Partially metabolizable long chain fatty acid (LCFA) tracers have been recently developed and employed for this purpose: [9,10-3H]-(R)-2-bromopalmitate ([3H]-BROMO) and [125I]-15-(rho-iodophenyl)-3-R,S-methylpentadecanoic acid ([125I]-BMIPP). These analogues are taken up like native fatty acids, but once inside the cell do not directly enter beta-oxidation. Rather, they become trapped in the slower processes of omega and alpha-oxidation. Study aims were to (1) simultaneously assess and compare [3H]-BROMO and [125I]-BMIPP and (2) determine if tracer breakdown is affected by elevated metabolic demands. Catheters were implanted in a carotid artery and jugular vein of Sprague-Dawley rats. Following 5 days recovery, fasted animals (5 h) underwent a rest (n = 8) or exercise (n = 8) (0.6 mi/h) protocol. An instantaneous bolus containing both [3H]-BROMO and [125I]-BMIPP was administered to determine LCFA uptake. No significant difference between [125I]-BMIPP and [3H]-BROMO uptake was found in cardiac or skeletal muscle during rest or exercise. In liver, rates of uptake were more than doubled with [3H]-BROMO compared to [125I]-BMIPP. Analysis of tracer conversion by TLC demonstrated no difference at rest. Exercise resulted in greater metabolism and excretion of tracers with approximately 37% and approximately 53% of [125I]-BMIPP and [3H]-BROMO present in conversion products at 40 min. In conclusion, [3H]-BROMO and [125I]-BMIPP are indistinguishable for the determination of tissue kinetics at rest in skeletal and cardiac muscle. Exercise preferentially exacerbates the breakdown of [3H]-BROMO, making [125I]-BMIPP the analogue of choice for prolonged (>30 min) experimental protocols with elevated metabolic demands.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Palmitate impairs and eicosapentaenoate restores insulin secretion through regulation of SREBP-1c in pancreatic islets.
Kato T, Shimano H, Yamamoto T, Ishikawa M, Kumadaki S, Matsuzaka T, Nakagawa Y, Yahagi N, Nakakuki M, Hasty AH, Takeuchi Y, Kobayashi K, Takahashi A, Yatoh S, Suzuki H, Sone H, Yamada N
(2008) Diabetes 57: 2382-92
MeSH Terms: Adenoviridae, Animals, Eicosapentaenoic Acid, Gene Expression, Gene Silencing, Insulin, Insulin Receptor Substrate Proteins, Insulin Secretion, Intracellular Signaling Peptides and Proteins, Ion Channels, Islets of Langerhans, Lipogenesis, Male, Mice, Mice, Inbred C57BL, Mice, Mutant Strains, Mitochondrial Proteins, Organ Culture Techniques, Palmitates, Phosphoproteins, Proto-Oncogene Proteins c-akt, RNA, Messenger, Signal Transduction, Sterol Regulatory Element Binding Protein 1, Uncoupling Protein 2
Show Abstract · Added March 27, 2013
OBJECTIVE - Chronic exposure to fatty acids causes beta-cell failure, often referred to as lipotoxicity. We investigated its mechanisms, focusing on contribution of SREBP-1c, a key transcription factor for lipogenesis.
RESEARCH DESIGN AND METHODS - We studied in vitro and in vivo effects of saturated and polyunsaturated acids on insulin secretion, insulin signaling, and expression of genes involved in beta-cell functions. Pancreatic islets isolated from C57BL/6 control and SREBP-1-null mice and adenoviral gene delivery or knockdown systems of related genes were used.
RESULTS - Incubation of C57BL/6 islets with palmitate caused inhibition of both glucose- and potassium-stimulated insulin secretion, but addition of eicosapentaenoate (EPA) restored both inhibitions. Concomitantly, palmitate activated and EPA abolished both mRNA and nuclear protein of SREBP-1c, accompanied by reciprocal changes of SREBP-1c target genes such as insulin receptor substrate-2 (IRS-2) and granuphilin. These palmitate-EPA effects on insulin secretion were abolished in SREBP-1-null islets. Suppression of IRS-2/Akt pathway could be a part of the downstream mechanism for the SREBP-1c-mediated insulin secretion defect because adenoviral constitutively active Akt compensated it. Uncoupling protein-2 (UCP-2) also plays a crucial role in the palmitate inhibition of insulin secretion, as confirmed by knockdown experiments, but SREBP-1c contribution to UCP-2 regulation was partial. The palmitate-EPA regulation of insulin secretion was similarly observed in islets from C57BL/6 mice pretreated with dietary manipulations. Furthermore, administration of EPA to diabetic KK-Ay mice ameliorated impairment of insulin secretion in their islets.
CONCLUSIONS - SREBP-1c plays a dominant role in palmitate-mediated insulin secretion defect, and EPA prevents it through SREBP-1c inhibition, implicating a therapeutic potential for treating diabetes related to lipotoxicity.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Granuphilin is activated by SREBP-1c and involved in impaired insulin secretion in diabetic mice.
Kato T, Shimano H, Yamamoto T, Yokoo T, Endo Y, Ishikawa M, Matsuzaka T, Nakagawa Y, Kumadaki S, Yahagi N, Takahashi A, Sone H, Suzuki H, Toyoshima H, Hasty AH, Takahashi S, Gomi H, Izumi T, Yamada N
(2006) Cell Metab 4: 143-54
MeSH Terms: Animals, Cells, Cultured, Diabetes Mellitus, Experimental, Insulin, Insulin Secretion, Islets of Langerhans, Maf Transcription Factors, Large, Male, Mice, Mice, Inbred C57BL, Mice, Inbred NOD, Mice, Transgenic, Palmitates, Potassium, Promoter Regions, Genetic, Signal Transduction, Sterol Regulatory Element Binding Protein 1, Vesicular Transport Proteins
Show Abstract · Added March 27, 2013
Granuphilin is a crucial component of the docking machinery of insulin-containing vesicles to the plasma membrane. Here, we show that the granuphilin promoter is a target of SREBP-1c, a transcription factor that controls fatty acid synthesis, and MafA, a beta cell differentiation factor. Potassium-stimulated insulin secretion (KSIS) was suppressed in islets with adenoviral-mediated overexpression of granuphilin and enhanced in islets with knockdown of granuphilin (in which granuphilin had been knocked down). SREBP-1c and granuphilin were activated in islets from beta cell-specific SREBP-1c transgenic mice, as well as in several diabetic mouse models and normal islets treated with palmitate, accompanied by a corresponding reduction in insulin secretion. Knockdown- or knockout-mediated ablation of granuphilin or SREBP-1c restored KSIS in these islets. Collectively, our data provide evidence that activation of the SREBP-1c/granuphilin pathway is a potential mechanism for impaired insulin secretion in diabetes, contributing to beta cell lipotoxicity.
0 Communities
1 Members
0 Resources
18 MeSH Terms