, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 76

Publication Record

Connections

A Randomized Phase II Neoadjuvant Study of Cisplatin, Paclitaxel With or Without Everolimus in Patients with Stage II/III Triple-Negative Breast Cancer (TNBC): Responses and Long-term Outcome Correlated with Increased Frequency of DNA Damage Response Gene Mutations, TNBC Subtype, AR Status, and Ki67.
Jovanović B, Mayer IA, Mayer EL, Abramson VG, Bardia A, Sanders ME, Kuba MG, Estrada MV, Beeler JS, Shaver TM, Johnson KC, Sanchez V, Rosenbluth JM, Dillon PM, Forero-Torres A, Chang JC, Meszoely IM, Grau AM, Lehmann BD, Shyr Y, Sheng Q, Chen SC, Arteaga CL, Pietenpol JA
(2017) Clin Cancer Res 23: 4035-4045
MeSH Terms: Adult, Cisplatin, DNA Damage, Drug-Related Side Effects and Adverse Reactions, Everolimus, Female, High-Throughput Nucleotide Sequencing, Humans, Ki-67 Antigen, Lymphocytes, Tumor-Infiltrating, Middle Aged, Mutation, Neoplasm Staging, Paclitaxel, Receptors, Androgen, Treatment Outcome, Triple Negative Breast Neoplasms
Show Abstract · Added April 9, 2017
Because of inherent disease heterogeneity, targeted therapies have eluded triple-negative breast cancer (TNBC), and biomarkers predictive of treatment response have not yet been identified. This study was designed to determine whether the mTOR inhibitor everolimus with cisplatin and paclitaxel would provide synergistic antitumor effects in TNBC. Patients with stage II/III TNBC were enrolled in a randomized phase II trial of preoperative weekly cisplatin, paclitaxel and daily everolimus or placebo for 12 weeks, until definitive surgery. Tumor specimens were obtained at baseline, cycle 1, and surgery. Primary endpoint was pathologic complete response (pCR); secondary endpoints included clinical responses, breast conservation rate, safety, and discovery of molecular features associated with outcome. Between 2009 and 2013, 145 patients were accrued; 36% of patients in the everolimus arm and 49% of patients in the placebo arm achieved pCR; in each arm, 50% of patients achieved complete responses by imaging. Higher rates of neutropenia, mucositis, and transaminase elevation were seen with everolimus. Clinical response to therapy and long-term outcome correlated with increased frequency of DNA damage response (DDR) gene mutations, Basal-like1 and Mesenchymal TNBC-subtypes, AR-negative status, and high Ki67, but not with tumor-infiltrating lymphocytes. The paclitaxel/cisplatin combination was well tolerated and active, but addition of everolimus was associated with more adverse events without improvement in pCR or clinical response. However, discoveries made from correlative studies could lead to predictive TNBC biomarkers that may impact clinical decision-making and provide new avenues for mechanistic exploration that could lead to clinical utility. .
©2017 American Association for Cancer Research.
1 Communities
2 Members
0 Resources
17 MeSH Terms
Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage III non-small cell lung cancer: a multicenter randomized phase III trial.
Liang J, Bi N, Wu S, Chen M, Lv C, Zhao L, Shi A, Jiang W, Xu Y, Zhou Z, Wang W, Chen D, Hui Z, Lv J, Zhang H, Feng Q, Xiao Z, Wang X, Liu L, Zhang T, Du L, Chen W, Shyr Y, Yin W, Li J, He J, Wang L
(2017) Ann Oncol 28: 777-783
MeSH Terms: Adult, Aged, Antineoplastic Combined Chemotherapy Protocols, Carboplatin, Carcinoma, Non-Small-Cell Lung, Chemoradiotherapy, Cisplatin, Etoposide, Female, Humans, Kaplan-Meier Estimate, Lung Neoplasms, Male, Middle Aged, Neoplasm Staging, Paclitaxel, Proportional Hazards Models
Show Abstract · Added April 18, 2017
Background - The optimal chemotherapy regimen administered currently with radiation in patients with stage III non-small cell lung cancer (NSCLC) remains unclear. A multicenter phase III trial was conducted to compare the efficacy of concurrent thoracic radiation therapy with either etoposide/cisplatin (EP) or carboplatin/paclitaxel (PC) in patients with stage III NSCLC.
Patients and methods - Patients were randomly received 60-66 Gy of thoracic radiation therapy concurrent with either etoposide 50 mg/m2 on days 1-5 and cisplatin 50 mg/m2 on days 1 and 8 every 4 weeks for two cycles (EP arm), or paclitaxel 45 mg/m2 and carboplatin (AUC 2) on day 1 weekly (PC arm). The primary end point was overall survival (OS). The study was designed with 80% power to detect a 17% superiority in 3-year OS with a type I error rate of 0.05.
Results - A total of 200 patients were randomized and 191 patients were treated (95 in the EP arm and 96 in the PC arm). With a median follow-up time of 73 months, the 3-year OS was significantly higher in the EP arm than that of the PC arm. The estimated difference was 15.0% (95% CI 2.0%-28.0%) and P value of 0.024. Median survival times were 23.3 months in the EP arm and 20.7 months in the PC arm (log-rank test P = 0.095, HR 0.76, 95%CI 0.55-1.05). The incidence of Grade ≥2 radiation pneumonitis was higher in the PC arm (33.3% versus 18.9%, P = 0.036), while the incidence of Grade ≥3 esophagitis was higher in the EP arm (20.0% versus 6.3%, P = 0.009).
Conclusion - EP might be superior to weekly PC in terms of OS in the setting of concurrent chemoradiation for unresectable stage III NSCLC.
Trial registration ID - NCT01494558.
© The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Early Detection of Treatment-Induced Mitotic Arrest Using Temporal Diffusion Magnetic Resonance Spectroscopy.
Jiang X, Li H, Zhao P, Xie J, Khabele D, Xu J, Gore JC
(2016) Neoplasia 18: 387-97
MeSH Terms: Albumins, Animals, Antineoplastic Agents, Phytogenic, Apoptosis, Biomarkers, Tumor, Cell Line, Tumor, Cell Size, Female, Flow Cytometry, Humans, Magnetic Resonance Spectroscopy, Mice, Mice, Nude, Mitosis, Mitotic Index, Paclitaxel, Xenograft Model Antitumor Assays
Show Abstract · Added November 1, 2016
PURPOSE - A novel quantitative magnetic resonance imaging (MRI) method, namely, temporal diffusion spectroscopy (TDS), was used to detect the response of tumor cells (notably, mitotic arrest) to a specific antimitotic treatment (Nab-paclitaxel) in culture and human ovarian xenografts and evaluated as an early imaging biomarker of tumor responsiveness.
METHODS - TDS measures a series of apparent diffusion coefficients (ADCs) of tissue water over a range of effective diffusion times, which may correspond to diffusion distances ranging from subcellular to cellular levels (~3-20 μm). By fitting the measured ADC data to a tissue model, parameters reflecting structural properties such as restriction size in solid tumors can be extracted. Two types of human ovarian cell lines (OVCAR-8 as a responder to Nab-paclitaxel and NCI/ADR-RES as a resistant type) were treated with either vehicle (PBS) or Nab-paclitaxel, and treatment responses of both in vitro and in vivo cases were investigated using TDS.
RESULTS - Acute cell size increases induced by Nab-paclitaxel in responding tumors were confirmed by flow cytometry and light microscopy in cell culture. Nab-paclitaxel-induced mitotic arrest in treated tumors/cells was quantified histologically by measuring the mitotic index in vivo using a mitosis-specific marker (anti-phosphohistone H3). Changes in the fitted restriction size, one of the parameters obtained from TDS, were able to detect and quantify increases in tumor cell sizes. All the MR results had a high degree of consistency with other flow, microscopy, and histological data. Moreover, with an appropriate analysis, the Nab-paclitaxel-responsive tumors in vivo could be easily distinguished from all the other vehicle-treated and Nab-paclitaxel-resistant tumors.
CONCLUSION - TDS detects increases in cell sizes associated with antimitotic-therapy-induced mitotic arrest in solid tumors in vivo which occur before changes in tissue cellularity or conventional diffusion MRI metrics. By quantifying changes in cell size, TDS has the potential to improve the specificity of MRI methods in the evaluation of therapeutic response and enable a mechanistic understanding of therapy-induced changes in tumors.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
17 MeSH Terms
A phase 1b study of erlotinib in combination with gemcitabine and nab-paclitaxel in patients with previously untreated advanced pancreatic cancer: an Academic Oncology GI Cancer Consortium study.
Cohen SJ, O'Neil BH, Berlin J, Ames P, McKinley M, Horan J, Catalano PM, Davies A, Weekes CD, Leichman L
(2016) Cancer Chemother Pharmacol 77: 693-701
MeSH Terms: Aged, Albumins, Antineoplastic Combined Chemotherapy Protocols, Deoxycytidine, Erlotinib Hydrochloride, Female, Humans, Male, Middle Aged, Paclitaxel, Pancreatic Neoplasms
Show Abstract · Added May 7, 2016
PURPOSE - Addition of either nab-paclitaxel or erlotinib to gemcitabine to treat advanced pancreatic cancer has demonstrated overall survival benefit. This study was conducted to evaluate the tolerability and safety of combining all three drugs and assess preliminary evidence of efficacy.
METHODS - In this open-label, phase 1b study, patients with previously untreated, advanced pancreatic cancer were treated in 28-day cycles with intravenous gemcitabine/nab-paclitaxel on days 1, 8, and 15, and once daily oral erlotinib. A standard "3 + 3" design was used. Dose level 1 (DL1) for gemcitabine (mg/m(2))/nab-paclitaxel (mg/m(2))/erlotinib (mg) was 1000/125/100, respectively, with de-escalation to DL-1 (1000/100/100), DL-2b (1000/75/100), and DL-3 (1000/75/75). The maximum tolerated dose (MTD) was defined by occurrence of dose-limiting toxicity (DLT) in ≤1 of six patients within the first cycle. Efficacy was assessed with CT scans performed at two-cycle intervals.
RESULTS - Nineteen patients were enrolled. DLTs occurred in two patients at DL1, three patients at DL-1, two patients at DL-2b, and one patient at DL-3. The MTD for the combination of gemcitabine/nab-paclitaxel/erlotinib was DL-3 (1000/75/75). In analyses of efficacy among 14 evaluable patients, partial responses were observed in four of six patients at DL1, one of two patients at DL-2b, and two of six patients at DL-3.
CONCLUSION - The addition of erlotinib to gemcitabine and nab-paclitaxel is not tolerable at standard single-agent dosing of all drugs. However, significant clinical activity was noted, even at DL-3. Further study of the combination will need to incorporate reduced dosing.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Cardiac Outcomes of Patients Receiving Adjuvant Weekly Paclitaxel and Trastuzumab for Node-Negative, ERBB2-Positive Breast Cancer.
Dang C, Guo H, Najita J, Yardley D, Marcom K, Albain K, Rugo H, Miller K, Ellis M, Shapira I, Wolff AC, Carey LA, Moy B, Groarke J, Moslehi J, Krop I, Burstein HJ, Hudis C, Winer EP, Tolaney SM
(2016) JAMA Oncol 2: 29-36
MeSH Terms: Adult, Aged, Aged, 80 and over, Antineoplastic Combined Chemotherapy Protocols, Biomarkers, Tumor, Breast Neoplasms, Chemotherapy, Adjuvant, Disease-Free Survival, Drug Administration Schedule, Female, Humans, Middle Aged, Neoplasm Staging, Paclitaxel, Receptor, ErbB-2, Risk Assessment, Risk Factors, Stroke Volume, Time Factors, Trastuzumab, Treatment Outcome, United States, Ventricular Dysfunction, Left, Ventricular Function, Left, Young Adult
Show Abstract · Added March 6, 2016
IMPORTANCE - Trastuzumab is a life-saving therapy but is associated with symptomatic and asymptomatic left ventricular ejection fraction (LVEF) decline. We report the cardiac toxic effects of a nonanthracycline and trastuzumab-based treatment for patients with early-stage human epidermal growth factor receptor 2 (ERBB2, formerly HER2 or HER2/neu)-positive breast cancer.
OBJECTIVE - To determine the cardiac safety of paclitaxel with trastuzumab and the utility of LVEF monitoring in patients with node-negative, ERBB2-positive breast cancer.
DESIGN, SETTING, AND PARTICIPANTS - In this secondary analysis of an uncontrolled, single group study across 14 medical centers, enrollment of 406 patients with node-negative, ERBB2-positive breast cancer 3 cm, or smaller, and baseline LVEF of greater than or equal to 50% occurred from October 9, 2007, to September 3, 2010. Patients with a micrometastasis in a lymph node were later allowed with a study amendment. Median patient age was 55 years, 118 (29%) had hypertension, and 30 (7%) had diabetes. Patients received adjuvant paclitaxel for 12 weeks with trastuzumab, and trastuzumab was continued for 1 year. Median follow-up was 4 years.
INTERVENTIONS - Treatment consisted of weekly 80-mg/m2 doses of paclitaxel administered concurrently with trastuzumab intravenously for 12 weeks, followed by trastuzumab monotherapy for 39 weeks. During the monotherapy phase, trastuzumab could be administered weekly 2-mg/kg or every 3 weeks as 6-mg/kg. Radiation and hormone therapy were administered per standard guidelines after completion of the 12 weeks of chemotherapy. Patient LVEF was assessed at baseline, 12 weeks, 6 months, and 1 year.
MAIN OUTCOMES AND MEASURES - Cardiac safety data, including grade 3 to 4 left ventricular systolic dysfunction (LVSD) and significant asymptomatic LVEF decline, as defined by our study, were reported.
RESULTS - Overall, 2 patients (0.5%) (95% CI, 0.1%-1.8%) developed grade 3 LVSD and came off study, and 13 (3.2%) (95% CI, 1.9%-5.4%) had significant asymptomatic LVEF decline, 11 of whom completed study treatment. Median LVEF at baseline was 65%; 12 weeks, 64%; 6 months, 64%; and 1 year, 64%.
CONCLUSIONS AND RELEVANCE - Cardiac toxic effects from paclitaxel with trastuzumab, manifesting as grade 3 or 4 LVSD or asymptomatic LVEF decline, were low. Patient LVEF was assessed at baseline, 12 weeks, 6 months, and 1 year, and our findings suggest that LVEF monitoring during trastuzumab therapy without anthracyclines could be simplified for many individuals.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Sequential targeted delivery of paclitaxel and camptothecin using a cross-linked "nanosponge" network for lung cancer chemotherapy.
Hariri G, Edwards AD, Merrill TB, Greenbaum JM, van der Ende AE, Harth E
(2014) Mol Pharm 11: 265-75
MeSH Terms: Animals, Antineoplastic Combined Chemotherapy Protocols, Apoptosis, Camptothecin, Carcinoma, Lewis Lung, Cell Cycle, Cell Proliferation, Cross-Linking Reagents, Drug Carriers, Drug Delivery Systems, Humans, Immunoenzyme Techniques, Lung Neoplasms, Male, Mice, Mice, Inbred C57BL, Mice, Nude, Microscopy, Electron, Transmission, Nanoparticles, Paclitaxel, Peptide Fragments, Radiation, Ionizing, Tumor Cells, Cultured
Show Abstract · Added July 21, 2014
The applicability of a HVGGSSV peptide targeted "nanosponge" drug delivery system for sequential administration of a microtubule inhibitor (paclitaxel) and topoisomerase I inhibitor (camptothecin) was investigated in a lung cancer model. Schedule-dependent combination treatment with nanoparticle paclitaxel (NP PTX) and camptothecin (NP CPT) was studied in vitro using flow cytometry and confocal imaging to analyze changes in cell cycle, microtubule morphology, apoptosis, and cell proliferation. Results showed significant G2/M phase cell cycle arrest, changes in microtubule dynamics that produced increased apoptotic cell death and decreased proliferation with initial exposure to NP PTX, followed by NP CPT in lung cancer cells. In vivo molecular imaging and TEM studies validated HVGGSSV-NP tumor binding at 24 h and confirmed the presence of Nanogold labeled HVGGSSV-NPs in tumor microvascular endothelial cells. Therapeutic efficacy studies conducted with sequential HVGGSSV targeted NP PTX and NP CPT showed 2-fold greater tumor growth delay in combination versus monotherapy treated groups, and 4-fold greater delay compared to untargeted and systemic drug controls. Analytical HPLC/MS methods were used to quantify drug content in tumor tissues at various time points, with significant paclitaxel and camptothecin levels in tumors 2 days postinjection and continued presence of both drugs up to 23 days postinjection. The efficacy of the NP delivery system in sequential treatments was corroborated in both in vitro and in vivo lung cancer models showing increased G2/M phase arrest and microtubule disruption, resulting in enhanced apoptotic cell death, decreased cell proliferation and vascular density.
1 Communities
1 Members
0 Resources
23 MeSH Terms
Synthesis and in vitro efficacy of MMP9-activated NanoDendrons.
Samuelson LE, Scherer RL, Matrisian LM, McIntyre JO, Bornhop DJ
(2013) Mol Pharm 10: 3164-74
MeSH Terms: Animals, Cell Line, Tumor, Dipeptides, Doxorubicin, Drug Delivery Systems, Humans, Matrix Metalloproteinase 9, Matrix Metalloproteinase Inhibitors, Paclitaxel, Prodrugs, Rats
Show Abstract · Added March 7, 2014
Chemotherapeutics such as doxorubicin (DOX) and paclitaxel (PXL) have dose-limiting systemic toxicities, including cardiotoxicity and peripheral neuropathy. Delivery strategies to minimize these undesirable effects are needed and could improve efficacy, while reducing patient morbidity. Here, DOX and PXL were conjugated to a nanodendron (ND) through an MMP9-cleavable peptide linker, producing two new therapies, ND2(DOX) and ND2(PXL), designed to improve delivery specificity to the tumor microenvironment and reduce systemic toxicity. Comparative cytotoxicity assays were performed between intact ND-drug conjugates and the MMP9 released drug in cell lines with and without MMP9 expression. While ND2(DOX) was found to lose cytotoxicity due to the modification of DOX for conjugation to the ND; ND2(PXL) was determined to have the desired properties for a prodrug delivery system. ND2(PXL) was found to be cytotoxic in MMP9-expressing mouse mammary carcinoma (R221A-luc) (53%) and human breast carcinoma (MDA-MB-231) (66%) at a concentration of 50 nM (in PXL) after 48 h. Treating ND2(PXL) with MMP9 prior to the cytotoxicity assay resulted in a faster response; however, both cleaved and intact versions of the drug reached the same efficacy as the unmodified drug by 96 h in the R221A-luc and MDA-MB-231 cell lines. Further studies in modified Lewis lung carcinoma cells that either do (LLC(MMP9)) or do not (LLC(RSV)) express MMP9 demonstrate the selectivity of ND2(PXL) for MMP9. LLC(MMP9) cells were only 20% viable after 48 h of treatment, while LLC(RSV) were not affected. Inclusion of an MMP inhibitor, GM6001, when treating the LLC(MMP9) cells with ND2(PXL) eliminated the response of the MMP9 expressing cells (LLC(MMP9)). The data presented here suggests that these NDs, specifically ND2(PXL), are nontoxic until activated by MMP9, a protease common in the microenvironment of tumors, indicating that incorporation of chemotherapeutic or cytostatic agents onto the ND platform have potential for tumor-targeted efficacy with reduced in vivo systemic toxicities.
1 Communities
2 Members
0 Resources
11 MeSH Terms
TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer.
Bhola NE, Balko JM, Dugger TC, Kuba MG, Sánchez V, Sanders M, Stanford J, Cook RS, Arteaga CL
(2013) J Clin Invest 123: 1348-58
MeSH Terms: Animals, Antineoplastic Agents, Phytogenic, Breast Neoplasms, Cell Line, Tumor, Drug Resistance, Neoplasm, Female, Gene Expression, Gene Knockdown Techniques, Humans, Interleukin-8, Mice, Mice, Nude, Neoplastic Stem Cells, Paclitaxel, Protein-Serine-Threonine Kinases, Pyrazoles, Quinolines, RNA, Small Interfering, Receptor, ErbB-2, Receptor, Transforming Growth Factor-beta Type I, Receptors, Estrogen, Receptors, Progesterone, Receptors, Transforming Growth Factor beta, Signal Transduction, Smad4 Protein, Spheroids, Cellular, Transforming Growth Factor beta, Xenograft Model Antitumor Assays
Show Abstract · Added September 3, 2013
After an initial response to chemotherapy, many patients with triple-negative breast cancer (TNBC) have recurrence of drug-resistant metastatic disease. Studies with TNBC cells suggest that chemotherapy-resistant populations of cancer stem-like cells (CSCs) with self-renewing and tumor-initiating capacities are responsible for these relapses. TGF-β has been shown to increase stem-like properties in human breast cancer cells. We analyzed RNA expression in matched pairs of primary breast cancer biopsies before and after chemotherapy. Biopsies after chemotherapy displayed increased RNA transcripts of genes associated with CSCs and TGF-β signaling. In TNBC cell lines and mouse xenografts, the chemotherapeutic drug paclitaxel increased autocrine TGF-β signaling and IL-8 expression and enriched for CSCs, as indicated by mammosphere formation and CSC markers. The TGF-β type I receptor kinase inhibitor LY2157299, a neutralizing TGF-β type II receptor antibody, and SMAD4 siRNA all blocked paclitaxel-induced IL8 transcription and CSC expansion. Moreover, treatment of TNBC xenografts with LY2157299 prevented reestablishment of tumors after paclitaxel treatment. These data suggest that chemotherapy-induced TGF-β signaling enhances tumor recurrence through IL-8-dependent expansion of CSCs and that TGF-β pathway inhibitors prevent the development of drug-resistant CSCs. These findings support testing a combination of TGF-β inhibitors and anticancer chemotherapy in patients with TNBC.
1 Communities
5 Members
0 Resources
28 MeSH Terms
Analysis of high-throughput RNAi screening data in identifying genes mediating sensitivity to chemotherapeutic drugs: statistical approaches and perspectives.
Ye F, Bauer JA, Pietenpol JA, Shyr Y
(2012) BMC Genomics 13 Suppl 8: S3
MeSH Terms: Antineoplastic Agents, Phytogenic, Breast Neoplasms, Cell Line, Tumor, Female, High-Throughput Screening Assays, Humans, Models, Statistical, Paclitaxel, RNA Interference, RNA, Small Interfering, TOR Serine-Threonine Kinases
Show Abstract · Added November 13, 2013
BACKGROUND - High-throughput RNA interference (RNAi) screens have been used to find genes that, when silenced, result in sensitivity to certain chemotherapy drugs. Researchers therefore can further identify drug-sensitive targets and novel drug combinations that sensitize cancer cells to chemotherapeutic drugs. Considerable uncertainty exists about the efficiency and accuracy of statistical approaches used for RNAi hit selection in drug sensitivity studies. Researchers require statistical methods suitable for analyzing high-throughput RNAi screening data that will reduce false-positive and false-negative rates.
RESULTS - In this study, we carried out a simulation study to evaluate four types of statistical approaches (fold-change/ratio, parametric tests/statistics, sensitivity index, and linear models) with different scenarios of RNAi screenings for drug sensitivity studies. With the simulated datasets, the linear model resulted in significantly lower false-negative and false-positive rates. Based on the results of the simulation study, we then make recommendations of statistical analysis methods for high-throughput RNAi screening data in different scenarios. We assessed promising methods using real data from a loss-of-function RNAi screen to identify hits that modulate paclitaxel sensitivity in breast cancer cells. High-confidence hits with specific inhibitors were further analyzed for their ability to inhibit breast cancer cell growth. Our analysis identified a number of gene targets with inhibitors known to enhance paclitaxel sensitivity, suggesting other genes identified may merit further investigation.
CONCLUSIONS - RNAi screening can identify druggable targets and novel drug combinations that can sensitize cancer cells to chemotherapeutic drugs. However, applying an inappropriate statistical method or model to the RNAi screening data will result in decreased power to detect the true hits and increase false positive and false negative rates, leading researchers to draw incorrect conclusions. In this paper, we make recommendations to enable more objective selection of statistical analysis methods for high-throughput RNAi screening data.
1 Communities
4 Members
0 Resources
11 MeSH Terms
Integration of cell line and clinical trial genome-wide analyses supports a polygenic architecture of Paclitaxel-induced sensory peripheral neuropathy.
Wheeler HE, Gamazon ER, Wing C, Njiaju UO, Njoku C, Baldwin RM, Owzar K, Jiang C, Watson D, Shterev I, Kubo M, Zembutsu H, Winer EP, Hudis CA, Shulman LN, Nakamura Y, Ratain MJ, Kroetz DL, Cancer and Leukemia Group B, Cox NJ, Dolan ME
(2013) Clin Cancer Res 19: 491-9
MeSH Terms: Antineoplastic Agents, Phytogenic, Breast Neoplasms, Cell Line, Tumor, DNA-Binding Proteins, Female, Genome-Wide Association Study, Humans, Paclitaxel, Peripheral Nervous System Diseases, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Regulatory Factor X Transcription Factors, Transcription Factors
Show Abstract · Added February 22, 2016
PURPOSE - We sought to show the relevance of a lymphoblastoid cell line (LCL) model in the discovery of clinically relevant genetic variants affecting chemotherapeutic response by comparing LCL genome-wide association study (GWAS) results to clinical GWAS results.
EXPERIMENTAL DESIGN - A GWAS of paclitaxel-induced cytotoxicity was conducted in 247 LCLs from the HapMap Project and compared with a GWAS of sensory peripheral neuropathy in patients with breast cancer (n = 855) treated with paclitaxel in the Cancer and Leukemia Group B (CALGB) 40101 trial. Significant enrichment was assessed by permutation resampling analysis.
RESULTS - We observed an enrichment of LCL cytotoxicity-associated single-nucleotide polymorphisms (SNP) in the sensory peripheral neuropathy-associated SNPs from the clinical trial with concordant allelic directions of effect (empirical P = 0.007). Of the 24 SNPs that overlap between the clinical trial (P < 0.05) and the preclinical cytotoxicity study (P < 0.001), 19 of them are expression quantitative trait loci (eQTL), which is a significant enrichment of this functional class (empirical P = 0.0447). One of these eQTLs is located in RFX2, which encodes a member of the DNA-binding regulatory factor X family. Decreased expression of this gene by siRNA resulted in increased sensitivity of Neuroscreen-1(NS-1; rat pheochromocytoma) cells to paclitaxel as measured by reduced neurite outgrowth and increased cytotoxicity, functionally validating the involvement of RFX2 in nerve cell response to paclitaxel.
CONCLUSIONS - The enrichment results and functional example imply that cellular models of chemotherapeutic toxicity may capture components of the underlying polygenic architecture of related traits in patients.
©2012 AACR.
0 Communities
2 Members
0 Resources
13 MeSH Terms