Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 67

Publication Record

Connections

Mono(2-ethylhexyl) phthalate (MEHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) but not di(2-ethylhexyl) phthalate (DEHP) bind productively to the peroxisome proliferator-activated receptor γ.
Kratochvil I, Hofmann T, Rother S, Schlichting R, Moretti R, Scharnweber D, Hintze V, Escher BI, Meiler J, Kalkhof S, von Bergen M
(2019) Rapid Commun Mass Spectrom 33 Suppl 1: 75-85
MeSH Terms: Cell Line, Cell Survival, Humans, Hydrogen Deuterium Exchange-Mass Spectrometry, Molecular Docking Simulation, PPAR gamma, Phthalic Acids, Protein Binding
Show Abstract · Added March 21, 2020
RATIONALE - The most frequently occurring phthalate, di(2-ethylhexyl) phthalate (DEHP), causes adverse effects on glucose homeostasis and insulin sensitivity in several cell models and epidemiological studies. However, thus far, there is no information available on the molecular interaction of phthalates and one of the key regulators of the metabolism, the peroxisome proliferator-activated receptor gamma (PPARγ). Since the endogenous ligand of PPARγ, 15-deoxy-delta-12,14-prostaglandin J (15Δ-PGJ ), features structural similarity to DEHP and its main metabolites produced in human hepatic metabolism, mono(2-ethylhexyl) phthalate (MEHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), we tested the hypothesis of direct interactions between PPARγ and DEHP or its transformation products.
METHODS - Hydrogen/deuterium exchange mass spectrometry (HDX-MS) and docking were conducted to obtain structural insights into the interactions and surface plasmon resonance (SPR) analysis to reveal information about binding levels. To confirm the activation of PPARγ upon ligand binding on the cellular level, the GeneBLAzer® bioassay was performed.
RESULTS - HDX-MS and SPR analyses demonstrated that the metabolites MEHP and MEOHP, but not DEHP itself, bind to the ligand binding pocket of PPARγ. This binding leads to typical activation-associated conformational changes, as observed with its endogenous ligand 15Δ-PGJ . Furthermore, the reporter gene assay confirmed productive interaction. DEHP was inactive up to a concentration of 14 μM, while the metabolites MEHP and MEOHP were active at low micromolar concentrations.
CONCLUSIONS - In summary, this study gives structural insights into the direct interaction of PPARγ with MEHP and MEOHP and shows that the DEHP transformation products may modulate the lipid metabolism through PPARγ pathways.
© 2018 John Wiley & Sons, Ltd.
0 Communities
1 Members
0 Resources
MeSH Terms
Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of in adipocyte metabolism.
Zhang X, Xue C, Lin J, Ferguson JF, Weiner A, Liu W, Han Y, Hinkle C, Li W, Jiang H, Gosai S, Hachet M, Garcia BA, Gregory BD, Soccio RE, Hogenesch JB, Seale P, Li M, Reilly MP
(2018) Sci Transl Med 10:
MeSH Terms: Adipocytes, Adipose Tissue, Cell Differentiation, Cell Nucleus, Gene Expression Regulation, Heterogeneous-Nuclear Ribonucleoprotein U, Humans, Lipids, Lipogenesis, PPAR gamma, RNA, Long Noncoding, RNA, Messenger, RNA-Binding Proteins, Transcription, Genetic
Show Abstract · Added April 2, 2019
Long intergenic noncoding RNAs (lincRNAs) have emerged as important modulators of cellular functions. Most lincRNAs are not conserved among mammals, raising the fundamental question of whether nonconserved adipose-expressed lincRNAs are functional. To address this, we performed deep RNA sequencing of gluteal subcutaneous adipose tissue from 25 healthy humans. We identified 1001 putative lincRNAs expressed in all samples through de novo reconstruction of noncoding transcriptomes and integration with existing lincRNA annotations. One hundred twenty lincRNAs had adipose-enriched expression, and 54 of these exhibited peroxisome proliferator-activated receptor γ (PPARγ) or CCAAT/enhancer binding protein α (C/EBPα) binding at their loci. Most of these adipose-enriched lincRNAs (~85%) were not conserved in mice, yet on average, they showed degrees of expression and binding of PPARγ and C/EBPα similar to those displayed by conserved lincRNAs. Most adipose lincRNAs differentially expressed ( = 53) in patients after bariatric surgery were nonconserved. The most abundant adipose-enriched lincRNA in our subcutaneous adipose data set, , was nonconserved, up-regulated in adipose depots of obese individuals, and markedly induced during in vitro human adipocyte differentiation. We demonstrated that interacts with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) at distinct subcellular locations to regulate adipocyte differentiation and lipogenesis.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion.
Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, Torres TP, Byndloss AJ, Faber F, Gao Y, Litvak Y, Lopez CA, Xu G, Napoli E, Giulivi C, Tsolis RM, Revzin A, Lebrilla CB, Bäumler AJ
(2017) Science 357: 570-575
MeSH Terms: Angiopoietin-like 4 Protein, Anilides, Animals, Anti-Bacterial Agents, Butyrates, Caco-2 Cells, Clostridium, Colitis, Colon, Dysbiosis, Enterobacteriaceae, Epithelial Cells, Female, Gastrointestinal Microbiome, Gene Expression, Homeostasis, Humans, Male, Mice, Mice, Inbred C57BL, Nitrates, Nitric Oxide Synthase Type II, Oxidation-Reduction, PPAR gamma, Signal Transduction, Streptomycin
Show Abstract · Added March 30, 2020
Perturbation of the gut-associated microbial community may underlie many human illnesses, but the mechanisms that maintain homeostasis are poorly understood. We found that the depletion of butyrate-producing microbes by antibiotic treatment reduced epithelial signaling through the intracellular butyrate sensor peroxisome proliferator-activated receptor γ (PPAR-γ). Nitrate levels increased in the colonic lumen because epithelial expression of , the gene encoding inducible nitric oxide synthase, was elevated in the absence of PPAR-γ signaling. Microbiota-induced PPAR-γ signaling also limits the luminal bioavailability of oxygen by driving the energy metabolism of colonic epithelial cells (colonocytes) toward β-oxidation. Therefore, microbiota-activated PPAR-γ signaling is a homeostatic pathway that prevents a dysbiotic expansion of potentially pathogenic and by reducing the bioavailability of respiratory electron acceptors to Enterobacteriaceae in the lumen of the colon.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
MeSH Terms
p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion.
Helman A, Klochendler A, Azazmeh N, Gabai Y, Horwitz E, Anzi S, Swisa A, Condiotti R, Granit RZ, Nevo Y, Fixler Y, Shreibman D, Zamir A, Tornovsky-Babeay S, Dai C, Glaser B, Powers AC, Shapiro AM, Magnuson MA, Dor Y, Ben-Porath I
(2016) Nat Med 22: 412-20
MeSH Terms: Aging, Animals, Cell Proliferation, Cellular Senescence, Cyclin-Dependent Kinase Inhibitor p16, Fibroblasts, Gene Expression Regulation, Glucose, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Mice, Mice, Transgenic, PPAR gamma, TOR Serine-Threonine Kinases
Show Abstract · Added March 17, 2016
Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.
2 Communities
2 Members
0 Resources
16 MeSH Terms
Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype.
Yamamoto S, Zhong J, Yancey PG, Zuo Y, Linton MF, Fazio S, Yang H, Narita I, Kon V
(2015) Atherosclerosis 242: 56-64
MeSH Terms: Angiotensin Receptor Antagonists, Animals, Aortic Diseases, Apolipoproteins E, Apoptosis, Atherosclerosis, Cell Line, Cytokines, Disease Models, Animal, Drug Evaluation, Preclinical, Drug Synergism, Drug Therapy, Combination, Female, Hyperlipidemias, Inflammation, Losartan, Macrophages, Mice, Mice, Inbred C57BL, Mice, Knockout, Nephrectomy, PPAR gamma, Phenotype, Pioglitazone, Renal Insufficiency, Chronic, Renin-Angiotensin System, Thiazolidinediones
Show Abstract · Added April 10, 2018
OBJECTIVE - Chronic kidney disease (CKD) amplifies atherosclerosis, which involves renin-angiotensin system (RAS) regulation of macrophages. RAS influences peroxisome proliferator-activated receptor-γ (PPARγ), a modulator of atherogenic functions of macrophages, however, little is known about its effects in CKD. We examined the impact of combined therapy with a PPARγ agonist and angiotensin receptor blocker on atherogenesis in a murine uninephrectomy model.
METHODS - Apolipoprotein E knockout mice underwent uninephrectomy (UNx) and treatment with pioglitazone (UNx + Pio), losartan (UNx + Los), or both (UNx + Pio/Los) for 10 weeks. Extent and characteristics of atherosclerotic lesions and macrophage phenotypes were assessed; RAW264.7 and primary peritoneal mouse cells were used to examine pioglitazone and losartan effects on macrophage phenotype and inflammatory response.
RESULTS - UNx significantly increased atherosclerosis. Pioglitazone and losartan each significantly reduced the atherosclerotic burden by 29.6% and 33.5%, respectively; although the benefit was dramatically augmented by combination treatment which lessened atherosclerosis by 55.7%. Assessment of plaques revealed significantly greater macrophage area in UNx + Pio/Los (80.7 ± 11.4% vs. 50.3 ± 4.2% in UNx + Pio and 57.2 ± 6.5% in UNx + Los) with more apoptotic cells. The expanded macrophage-rich lesions of UNx + Pio/Los had more alternatively activated, Ym-1 and arginine 1-positive M2 phenotypes (Ym-1: 33.6 ± 8.2%, p < 0.05 vs. 12.0 ± 1.1% in UNx; arginase 1: 27.8 ± 0.9%, p < 0.05 vs. 11.8 ± 1.3% in UNx). In vitro, pioglitazone alone and together with losartan was more effective than losartan alone in dampening lipopolysaccharide-induced cytokine production, suppressing M1 phenotypic change while enhancing M2 phenotypic change.
CONCLUSION - Combination of pioglitazone and losartan is more effective in reducing renal injury-induced atherosclerosis than either treatment alone. This benefit reflects mitigation in macrophage cytokine production, enhanced apoptosis, and a shift toward an anti-inflammatory phenotype.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
27 MeSH Terms
PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission.
de Guglielmo G, Melis M, De Luca MA, Kallupi M, Li HW, Niswender K, Giordano A, Senzacqua M, Somaini L, Cippitelli A, Gaitanaris G, Demopulos G, Damadzic R, Tapocik J, Heilig M, Ciccocioppo R
(2015) Neuropsychopharmacology 40: 927-37
MeSH Terms: Anilides, Animals, Conditioning, Operant, Dopamine, Dopaminergic Neurons, Heroin, Hypoglycemic Agents, Male, Mice, Transgenic, Morphine, Narcotics, Nucleus Accumbens, PPAR gamma, Pioglitazone, Prefrontal Cortex, Rats, Rats, Wistar, Self Administration, Synaptic Transmission, Thiazolidinediones, Time Factors, Ventral Tegmental Area, gamma-Aminobutyric Acid
Show Abstract · Added February 19, 2015
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes.
Majithia AR, Flannick J, Shahinian P, Guo M, Bray MA, Fontanillas P, Gabriel SB, GoT2D Consortium, NHGRI JHS/FHS Allelic Spectrum Project, SIGMA T2D Consortium, T2D-GENES Consortium, Rosen ED, Altshuler D
(2014) Proc Natl Acad Sci U S A 111: 13127-32
MeSH Terms: Adipocytes, Adult, Aged, Aged, 80 and over, Case-Control Studies, Cell Differentiation, Diabetes Mellitus, Type 2, Ethnic Groups, Female, Genetic Predisposition to Disease, Humans, Male, Middle Aged, PPAR gamma, Polymorphism, Single Nucleotide, Risk Factors, Sequence Analysis, DNA
Show Abstract · Added April 13, 2017
Peroxisome proliferator-activated receptor gamma (PPARG) is a master transcriptional regulator of adipocyte differentiation and a canonical target of antidiabetic thiazolidinedione medications. In rare families, loss-of-function (LOF) mutations in PPARG are known to cosegregate with lipodystrophy and insulin resistance; in the general population, the common P12A variant is associated with a decreased risk of type 2 diabetes (T2D). Whether and how rare variants in PPARG and defects in adipocyte differentiation influence risk of T2D in the general population remains undetermined. By sequencing PPARG in 19,752 T2D cases and controls drawn from multiple studies and ethnic groups, we identified 49 previously unidentified, nonsynonymous PPARG variants (MAF < 0.5%). Considered in aggregate (with or without computational prediction of functional consequence), these rare variants showed no association with T2D (OR = 1.35; P = 0.17). The function of the 49 variants was experimentally tested in a novel high-throughput human adipocyte differentiation assay, and nine were found to have reduced activity in the assay. Carrying any of these nine LOF variants was associated with a substantial increase in risk of T2D (OR = 7.22; P = 0.005). The combination of large-scale DNA sequencing and functional testing in the laboratory reveals that approximately 1 in 1,000 individuals carries a variant in PPARG that reduces function in a human adipocyte differentiation assay and is associated with a substantial risk of T2D.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Retinaldehyde dehydrogenase 1 deficiency inhibits PPARγ-mediated bone loss and marrow adiposity.
Nallamshetty S, Le PT, Wang H, Issacsohn MJ, Reeder DJ, Rhee EJ, Kiefer FW, Brown JD, Rosen CJ, Plutzky J
(2014) Bone 67: 281-91
MeSH Terms: Absorptiometry, Photon, Adiposity, Aldehyde Dehydrogenase, Aldehyde Dehydrogenase 1 Family, Animals, Cells, Cultured, Female, Magnetic Resonance Imaging, Mice, Mice, Knockout, Osteoblasts, Osteogenesis, PPAR gamma, Retinal Dehydrogenase, Reverse Transcriptase Polymerase Chain Reaction, Rosiglitazone, Thiazolidinediones, X-Ray Microtomography
Show Abstract · Added September 6, 2016
PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1(-/-)) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1(-/-) mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1(-/-) HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Reversing vascular dysfunction in rheumatoid arthritis: improved augmentation index but not endothelial function with peroxisome proliferator-activated receptor γ agonist therapy.
Ormseth MJ, Oeser AM, Cunningham A, Bian A, Shintani A, Solus J, Tanner SB, Stein CM
(2014) Arthritis Rheumatol 66: 2331-8
MeSH Terms: Adult, Aged, Antirheumatic Agents, Arthritis, Rheumatoid, Cross-Over Studies, Double-Blind Method, Endothelium, Vascular, Female, Humans, Hypoglycemic Agents, Insulin Resistance, Male, Middle Aged, PPAR gamma, Pioglitazone, Thiazolidinediones, Treatment Outcome
Show Abstract · Added January 20, 2015
OBJECTIVE - To examine the hypothesis that improving insulin sensitivity improves vascular function in rheumatoid arthritis (RA).
METHODS - We performed a 20-week, single center, randomized, double-blind, placebo-controlled crossover study. Patients with RA (n = 34) with moderate disease activity who were receiving stable disease-modifying antirheumatic drug therapy were randomized to drug sequence, receiving either pioglitazone 45 mg/day or matching placebo for 8 weeks, followed by a 4-week washout period and the alternative treatment for 8 weeks. We measured changes in vascular stiffness (augmentation index and aortic pulse wave velocity [PWV]), endothelial function (reactive hyperemia index), and blood pressure. High-sensitivity C-reactive protein levels and the homeostatic model assessment of insulin resistance were also measured. The treatment effect of pioglitazone on outcomes was analyzed using linear mixed-effects models.
RESULTS - Pioglitazone treatment resulted in a change in augmentation index of -4.7% units (95% confidence interval [95% CI] -7.9, -1.5) (P = 0.004) and in diastolic blood pressure of -3.0 mm Hg (95% CI -5.7, -0.2) (P = 0.03), but did not significantly change aortic PWV (P = 0.33) or reactive hyperemia index (P = 0.46). The improvements in augmentation index and diastolic blood pressure were not mediated by the effect of pioglitazone on insulin resistance or inflammation.
CONCLUSION - Our findings indicate that pioglitazone improves some indices of vascular function, including augmentation index and diastolic blood pressure, in patients with RA. This is not mediated by improved insulin sensitivity.
Copyright © 2014 by the American College of Rheumatology.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Do fish oil omega-3 fatty acids enhance antioxidant capacity and mitochondrial fatty acid oxidation in human atrial myocardium via PPARγ activation?
Anderson EJ, Thayne KA, Harris M, Shaikh SR, Darden TM, Lark DS, Williams JM, Chitwood WR, Kypson AP, Rodriguez E
(2014) Antioxid Redox Signal 21: 1156-63
MeSH Terms: Aged, Antioxidants, Fatty Acids, Omega-3, Female, Gene Expression, Heart Atria, Heart Diseases, Humans, Male, Middle Aged, Mitochondria, Heart, Myocardium, Oxidation-Reduction, PPAR gamma, Prospective Studies, Single-Blind Method
Show Abstract · Added January 23, 2015
Abstract Studies in experimental models suggest that n-3 polyunsaturated fatty acids (PUFAs) improve metabolic and anti-inflammatory/antioxidant capacity of the heart, although the mechanisms are unclear and translational evidence is lacking. In this study, patients ingested a moderately high dose of n-3 PUFAs (3.4 g/day eicosapentaenoic (EPA) and doxosahexaenoic acid (DHA) ethyl-esters) for a period of 2-3 weeks before having elective cardiac surgery. Blood was obtained before treatment and at the time of surgery, and myocardial tissue from the right atrium was also dissected during surgery. Blood EPA levels increased and myocardial tissue EPA and DHA levels were significantly higher in n-3 PUFA-treated patients compared with untreated, standard-of-care control patients. Interestingly, n-3 PUFA patients had greater nuclear transactivation of peroxisome proliferator-activated receptor-γ (PPARγ), fatty acid metabolic gene expression, and enhanced mitochondrial respiration supported by palmitoyl-carnitine in the atrial myocardium, despite no difference in mitochondrial content. Myocardial tissue from n-3 PUFA patients also displayed greater expression and activity of key antioxidant/anti-inflammatory enzymes. These findings lead to our hypothesis that PPARγ activation is a mechanism by which fish oil n-3 PUFAs enhance mitochondrial fatty acid oxidation and antioxidant capacity in human atrial myocardium, and that this preoperative therapeutic regimen may be optimal for mitigating oxidative/inflammatory stress associated with cardiac surgery.
0 Communities
1 Members
0 Resources
16 MeSH Terms