Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 4 of 4

Publication Record

Connections

Prostaglandin-Endoperoxide Synthase 1 Mediates the Timing of Parturition in Mice Despite Unhindered Uterine Contractility.
Herington JL, O'Brien C, Robuck MF, Lei W, Brown N, Slaughter JC, Paria BC, Mahadevan-Jansen A, Reese J
(2018) Endocrinology 159: 490-505
MeSH Terms: Abortifacient Agents, Steroidal, Animals, Cells, Cultured, Cervical Ripening, Cervix Uteri, Cyclooxygenase 1, Female, In Vitro Techniques, Luteolysis, Membrane Proteins, Mice, Inbred Strains, Mice, Knockout, Mifepristone, Myometrium, Ovariectomy, Oxytocics, Oxytocin, Pregnancy, Pregnancy, Prolonged, Progesterone, Uterine Contraction
Show Abstract · Added March 31, 2018
Cyclooxygenase (COX)-derived prostaglandins stimulate uterine contractions and prepare the cervix for parturition. Prior reports suggest Cox-1 knockout (KO) mice exhibit delayed parturition due to impaired luteolysis, yet the mechanism for late-onset delivery remains unclear. Here, we examined key factors for normal onset of parturition to determine whether any could account for the delayed parturition phenotype. Pregnant Cox-1KO mice did not display altered timing of embryo implantation or postimplantation growth. Although messenger RNAs of contraction-associated proteins (CAPs) were differentially expressed between Cox-1KO and wild-type (WT) myometrium, there were no differences in CAP agonist-induced intracellular calcium release, spontaneous or oxytocin (OT)-induced ex vivo uterine contractility, or in vivo uterine contractile pressure. Delayed parturition in Cox-1KO mice persisted despite exogenous OT treatment. Progesterone (P4) withdrawal, by ovariectomy or administration of the P4-antagonist RU486, diminished the delayed parturition phenotype of Cox-1KO mice. Because antepartum P4 levels do not decline in Cox-1KO females, P4-treated WT mice were examined for the effect of this hormone on in vivo uterine contractility and ex vivo cervical dilation. P4-treated WT mice had delayed parturition but normal uterine contractility. Cervical distensibility was decreased in Cox-1KO mice on the day of expected delivery and reduced in WT mice with long-term P4 treatment. Collectively, these findings show that delayed parturition in Cox-1KO mice is the result of impaired luteolysis and cervical dilation, despite the presence of strong uterine contractions.
Copyright © 2018 Endocrine Society.
0 Communities
2 Members
0 Resources
MeSH Terms
A Distributed Network for Social Cognition Enriched for Oxytocin Receptors.
Mitre M, Marlin BJ, Schiavo JK, Morina E, Norden SE, Hackett TA, Aoki CJ, Chao MV, Froemke RC
(2016) J Neurosci 36: 2517-35
MeSH Terms: Amino Acid Sequence, Animals, Auditory Cortex, Cognition, Female, HEK293 Cells, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Molecular Sequence Data, Nerve Net, Receptors, Oxytocin, Social Behavior
Show Abstract · Added April 6, 2017
Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent-infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition.
Copyright © 2016 the authors 0270-6474/16/362517-19$15.00/0.
0 Communities
1 Members
0 Resources
15 MeSH Terms
High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility.
Herington JL, Swale DR, Brown N, Shelton EL, Choi H, Williams CH, Hong CC, Paria BC, Denton JS, Reese J
(2015) PLoS One 10: e0143243
MeSH Terms: Animals, Calcium, Calcium Channel Blockers, Cells, Cultured, Dose-Response Relationship, Drug, Drug Discovery, Female, High-Throughput Screening Assays, Humans, Mice, Myometrium, Oxytocin, Pregnancy, Primary Cell Culture, Reproducibility of Results, Uterine Contraction, Uterus
Show Abstract · Added December 20, 2015
The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility.
1 Communities
5 Members
0 Resources
17 MeSH Terms
Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function.
Sun Y, Boyd K, Xu W, Ma J, Jackson CW, Fu A, Shillingford JM, Robinson GW, Hennighausen L, Hitzler JK, Ma Z, Morris SW
(2006) Mol Cell Biol 26: 5809-26
MeSH Terms: Animals, Animals, Newborn, Apoptosis, Child, Failure to Thrive, Female, Gene Expression Profiling, Gene Expression Regulation, Gene Targeting, Heart, Humans, Infant, Lactation, Leukemia, Megakaryoblastic, Acute, Male, Mammary Glands, Animal, Mice, Mice, Inbred C57BL, Mice, Knockout, Milk, Myocytes, Cardiac, Oligonucleotide Array Sequence Analysis, Oxytocin, Pregnancy, Prolactin, STAT3 Transcription Factor, Serum Response Factor, Trans-Activators
Show Abstract · Added March 5, 2014
Transcription of immediate-early genes--as well as multiple genes affecting muscle function, cytoskeletal integrity, apoptosis control, and wound healing/angiogenesis--is regulated by serum response factor (Srf). Extracellular signals regulate Srf in part via a pathway involving megakaryoblastic leukemia 1 (Mkl1, also known as myocardin-related transcription factor A [Mrtf-a]), which coactivates Srf-responsive genes downstream of Rho GTPases. Here we investigate Mkl1 function using gene targeting and show the protein to be essential for the physiologic preparation of the mammary gland during pregnancy and the maintenance of lactation. Lack of Mkl1 causes premature involution and impairs expression of Srf-dependent genes in the mammary myoepithelial cells, which control milk ejection following oxytocin-induced contraction. Despite the importance of Srf in multiple transcriptional pathways and widespread Mkl1 expression, the spectrum of abnormalities associated with Mkl1 absence appears surprisingly restricted.
0 Communities
1 Members
0 Resources
28 MeSH Terms