Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 35

Publication Record

Connections

The Role of the EGF Receptor in Sex Differences in Kidney Injury.
Zhang MZ, Sasaki K, Li Y, Li Z, Pan Y, Jin GN, Wang Y, Niu A, Wang S, Fan X, Chen JC, Borza C, Yang H, Pozzi A, Fogo AB, Harris RC
(2019) J Am Soc Nephrol 30: 1659-1673
MeSH Terms: Age Factors, Alleles, Animals, Castration, Cell Line, ErbB Receptors, Erlotinib Hydrochloride, Female, Gain of Function Mutation, Humans, Kidney, Male, Mice, Mice, Inbred C57BL, Middle Aged, Ovariectomy, Podocytes, Protein Kinase Inhibitors, RNA, Messenger, Renal Insufficiency, Chronic, Sex Factors, Testosterone
Show Abstract · Added August 7, 2019
BACKGROUND - Sex differences mediating predisposition to kidney injury are well known, with evidence indicating lower CKD incidence rates and slower decline in renal function in nondiabetic CKD for premenopausal women compared with men. However, signaling pathways involved have not been elucidated to date. The EGF receptor (EGFR) is widely expressed in the kidney in glomeruli and tubules, and persistent and dysregulated EGFR activation mediates progressive renal injury.
METHODS - To investigate the sex differences in response to renal injury, we examined EGFR expression in mice, in human kidney tissue, and in cultured cell lines.
RESULTS - In wild type mice, renal mRNA and protein EGFR levels were comparable in males and females at postnatal day 7 but were significantly lower in age-matched adult females than in adult males. Similar gender differences in renal EGFR expression were detected in normal adult human kidneys. In Dsk5 mutant mice with a gain-of-function allele that increases basal EGFR kinase activity, males had progressive glomerulopathy, albuminuria, loss of podocytes, and tubulointerstitial fibrosis, but female Dsk5 mice had minimal kidney injury. Oophorectomy had no effect on renal EGFR levels in female Dsk5 mice, while castration protected against the kidney injury in male Dsk5 mice, in association with a reduction in EGFR expression to levels seen in females. Conversely, testosterone increased EGFR expression and renal injury in female Dsk5 mice. Testosterone directly stimulated EGFR expression in cultured kidney cells.
CONCLUSIONS - These studies indicate that differential renal EGFR expression plays a role in the sex differences in susceptibility to progressive kidney injury that may be mediated at least in part by testosterone.
Copyright © 2019 by the American Society of Nephrology.
1 Communities
0 Members
0 Resources
22 MeSH Terms
Estradiol Treatment Initiated Early After Ovariectomy Regulates Myocardial Gene Expression and Inhibits Diastolic Dysfunction in Female Cynomolgus Monkeys: Potential Roles for Calcium Homeostasis and Extracellular Matrix Remodeling.
Michalson KT, Groban L, Howard TD, Shively CA, Sophonsritsuk A, Appt SE, Cline JM, Clarkson TB, Carr JJ, Kitzman DW, Register TC
(2018) J Am Heart Assoc 7: e009769
MeSH Terms: Animals, Calcium, Diastole, Estradiol, Extracellular Matrix, Female, Gene Expression, Heart, Homeostasis, Macaca fascicularis, Myocardium, Ovariectomy, Postoperative Period, Random Allocation, Time Factors
Show Abstract · Added January 10, 2020
Background Left ventricular ( LV ) diastolic dysfunction often precedes heart failure with preserved ejection fraction, the dominant form of heart failure in postmenopausal women. The objective of this study was to determine the effect of oral estradiol treatment initiated early after ovariectomy on LV function and myocardial gene expression in female cynomolgus macaques. Methods and Results Monkeys were ovariectomized and randomized to receive placebo (control) or oral estradiol at a human-equivalent dose of 1 mg/day for 8 months. Monkeys then underwent conventional and tissue Doppler imaging to assess cardiac function, followed by transcriptomic and histomorphometric analyses of LV myocardium. Age, body weight, blood pressure, and heart rate were similar between groups. Echocardiographic mitral early and late inflow velocities, mitral annular velocities, and mitral E deceleration slope were higher in estradiol monkeys (all P<0.05), despite similar estimated LV filling pressure. MCP1 (monocyte chemoattractant protein 1) and LV collagen staining were lower in estradiol animals ( P<0.05). Microarray analysis revealed differential myocardial expression of 40 genes (>1.2-fold change; false discovery rate, P<0.05) in estradiol animals relative to controls, which implicated pathways associated with better calcium ion homeostasis and muscle contraction and lower extracellular matrix deposition ( P<0.05). Conclusions Estradiol treatment initiated soon after ovariectomy resulted in enhanced LV diastolic function, and altered myocardial gene expression towards decreased extracellular matrix deposition, improved myocardial contraction, and calcium homeostasis, suggesting that estradiol directly or indirectly modulates the myocardial transcriptome to preserve cardiovascular function.
0 Communities
1 Members
0 Resources
MeSH Terms
α-Adrenergic Receptor Activation Decreases Parabrachial Nucleus Excitatory Drive onto BNST CRF Neurons and Reduces Their Activity .
Fetterly TL, Basu A, Nabit BP, Awad E, Williford KM, Centanni SW, Matthews RT, Silberman Y, Winder DG
(2019) J Neurosci 39: 472-484
MeSH Terms: Adrenergic alpha-2 Receptor Agonists, Animals, Corticotropin-Releasing Hormone, Female, Gene Expression, Genes, fos, Guanfacine, Male, Mice, Mice, Inbred C57BL, Neurons, Norepinephrine, Ovariectomy, Parabrachial Nucleus, Patch-Clamp Techniques, Protein Kinase C-delta, Receptors, Adrenergic, alpha-2, Receptors, G-Protein-Coupled, Restraint, Physical, Septal Nuclei, Stress, Psychological
Show Abstract · Added March 26, 2019
Stress contributes to numerous psychiatric disorders. Corticotropin releasing factor (CRF) signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and β-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α-AR is a G-linked GPCR, we assessed the impact of activating the G-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced in BNST neurons. Further, using as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the coexpression of in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α-AR activation suppresses the activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons. Stress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well tolerated α-AR agonist guanfacine reduces activity of these cells , and reduces excitatory PBN inputs onto these cells Additionally, we uncover a novel sex-dependent coexpression of with in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between norepinephrine and CRF, and point to an action by which guanfacine may reduce negative affective responses.
Copyright © 2019 the authors 0270-6474/19/390472-13$15.00/0.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Prostaglandin-Endoperoxide Synthase 1 Mediates the Timing of Parturition in Mice Despite Unhindered Uterine Contractility.
Herington JL, O'Brien C, Robuck MF, Lei W, Brown N, Slaughter JC, Paria BC, Mahadevan-Jansen A, Reese J
(2018) Endocrinology 159: 490-505
MeSH Terms: Abortifacient Agents, Steroidal, Animals, Cells, Cultured, Cervical Ripening, Cervix Uteri, Cyclooxygenase 1, Female, In Vitro Techniques, Luteolysis, Membrane Proteins, Mice, Inbred Strains, Mice, Knockout, Mifepristone, Myometrium, Ovariectomy, Oxytocics, Oxytocin, Pregnancy, Pregnancy, Prolonged, Progesterone, Uterine Contraction
Show Abstract · Added March 31, 2018
Cyclooxygenase (COX)-derived prostaglandins stimulate uterine contractions and prepare the cervix for parturition. Prior reports suggest Cox-1 knockout (KO) mice exhibit delayed parturition due to impaired luteolysis, yet the mechanism for late-onset delivery remains unclear. Here, we examined key factors for normal onset of parturition to determine whether any could account for the delayed parturition phenotype. Pregnant Cox-1KO mice did not display altered timing of embryo implantation or postimplantation growth. Although messenger RNAs of contraction-associated proteins (CAPs) were differentially expressed between Cox-1KO and wild-type (WT) myometrium, there were no differences in CAP agonist-induced intracellular calcium release, spontaneous or oxytocin (OT)-induced ex vivo uterine contractility, or in vivo uterine contractile pressure. Delayed parturition in Cox-1KO mice persisted despite exogenous OT treatment. Progesterone (P4) withdrawal, by ovariectomy or administration of the P4-antagonist RU486, diminished the delayed parturition phenotype of Cox-1KO mice. Because antepartum P4 levels do not decline in Cox-1KO females, P4-treated WT mice were examined for the effect of this hormone on in vivo uterine contractility and ex vivo cervical dilation. P4-treated WT mice had delayed parturition but normal uterine contractility. Cervical distensibility was decreased in Cox-1KO mice on the day of expected delivery and reduced in WT mice with long-term P4 treatment. Collectively, these findings show that delayed parturition in Cox-1KO mice is the result of impaired luteolysis and cervical dilation, despite the presence of strong uterine contractions.
Copyright © 2018 Endocrine Society.
0 Communities
2 Members
0 Resources
MeSH Terms
Bone corticalization requires local SOCS3 activity and is promoted by androgen action via interleukin-6.
Cho DC, Brennan HJ, Johnson RW, Poulton IJ, Gooi JH, Tonkin BA, McGregor NE, Walker EC, Handelsman DJ, Martin TJ, Sims NA
(2017) Nat Commun 8: 806
MeSH Terms: Androgens, Animals, Cancellous Bone, Chondrocytes, Dihydrotestosterone, Estradiol, Female, Interleukin-6, Male, Mice, Inbred C57BL, Osteogenesis, Ovariectomy, Suppressor of Cytokine Signaling 3 Protein
Show Abstract · Added March 26, 2019
Long bone strength is determined by its outer shell (cortical bone), which forms by coalescence of thin trabeculae at the metaphysis (corticalization), but the factors that control this process are unknown. Here we show that SOCS3-dependent cytokine expression regulates bone corticalization. Young male and female Dmp1Cre.Socs3 mice, in which SOCS3 has been ablated in osteocytes, have high trabecular bone volume and poorly defined metaphyseal cortices. After puberty, male mice recover, but female corticalization is still impaired, leading to a lasting defect in bone strength. The phenotype depends on sex-steroid hormones: dihydrotestosterone treatment of gonadectomized female Dmp1Cre.Socs3 mice restores normal cortical morphology, whereas in males, estradiol treatment, or IL-6 deletion, recapitulates the female phenotype. This suggests that androgen action promotes metaphyseal corticalization, at least in part, via IL-6 signaling.The strength of long bones is determined by coalescence of trabeculae during corticalization. Here the authors show that this process is regulated by SOCS3 via a mechanism dependent on IL-6 and expression of sex hormones.
0 Communities
1 Members
0 Resources
MeSH Terms
Estrogen and insulin transport through the blood-brain barrier.
May AA, Bedel ND, Shen L, Woods SC, Liu M
(2016) Physiol Behav 163: 312-321
MeSH Terms: ATP Binding Cassette Transporter, Subfamily B, Member 1, Animals, Blood Vessels, Blood-Brain Barrier, Body Weight, Brain, Dietary Fats, Estrogens, Female, Glucose Transporter Type 1, Insulin, Insulin Resistance, Male, Obesity, Ovariectomy, Rats, Rats, Long-Evans, Synaptophysin
Show Abstract · Added March 2, 2017
Obesity is associated with insulin resistance and reduced transport of insulin through the blood-brain barrier (BBB). Reversal of high-fat diet-induced obesity (HFD-DIO) by dietary intervention improves the transport of insulin through the BBB and the sensitivity of insulin in the brain. Although both insulin and estrogen (E2), when given alone, reduce food intake and body weight via the brain, E2 actually renders the brain relatively insensitive to insulin's catabolic action. The objective of these studies was to determine if E2 influences the ability of insulin to be transported into the brain, since the receptors for both E2 and insulin are found in BBB endothelial cells. E2 (acute or chronic) was systemically administered to ovariectomized (OVX) female rats and male rats fed a chow or a high-fat diet. Food intake, body weight and other metabolic parameters were assessed along with insulin entry into the cerebrospinal fluid (CSF). Acute E2 treatment in OVX female and male rats reduced body weight and food intake, and chronic E2 treatment prevented or partially reversed high-fat diet-induced obesity. However, none of these conditions increased insulin transport into the CNS; rather, chronic E2 treatment was associated less-effective insulin transport into the CNS relative to weight-matched controls. Thus, the reduction of brain insulin sensitivity by E2 is unlikely to be mediated by increasing the amount of insulin entering the CNS.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Ovarian mucinous tumor with malignant mural nodules: dedifferentiation or collision?
Desouki MM, Khabele D, Crispens MA, Fadare O
(2015) Int J Gynecol Pathol 34: 19-24
MeSH Terms: Carcinoma, Cell Movement, Cell Transformation, Neoplastic, Combined Modality Therapy, Drug Therapy, Female, Genes, ras, Humans, Mutation, Neoplasms, Cystic, Mucinous, and Serous, Ovarian Neoplasms, Ovariectomy, Proto-Oncogene Proteins B-raf, Treatment Outcome, Young Adult
Show Abstract · Added February 19, 2015
Ovarian mucinous tumors with mural nodules are rare surface epithelial-stromal tumors. The mural nodules are divergent neoplasms that may be benign or malignant. The latter may be in the form of a sarcoma, carcinosarcoma, anaplastic carcinoma, or a variety of other recognized histotypes of carcinoma, which raises the question of whether malignant mural nodules represent a form of dedifferentiation in ovarian mucinous tumors or whether they represent collision tumors. We recently reported the K-RAS gene mutation status in a case of ovarian mucinous adenocarcinoma with mural nodule of high-grade sarcoma. The mucinous and sarcomatous components revealed a mutation in codon 12 of the K-RAS gene of a different nucleotide substitution, indicating that these 2 tumor components were different clones of the same tumor. Herein, we are reporting another case of a 20-yr-old woman who presented with 22 cm pelvic mass, omental caking, and ascites. A diagnosis of invasive mucinous carcinoma with mural nodules of anaplastic carcinoma was rendered. K-RAS gene mutation studies revealed p.G12V, c.35G>T mutation in the 2 components of the tumor, which is the most common mutation reported in mucinous tumors of the ovary. The fact that sarcomatous or anaplastic carcinomatous mural nodules in ovarian mucinous tumors display the same K-RAS mutations as their underlying mucinous neoplasms provides supportive evidence that at least some malignant mural nodules represent a form of dedifferentiation in ovarian mucinous tumors, rather than a collision of 2 divergent tumor types.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice.
Lippert RN, Ellacott KL, Cone RD
(2014) Endocrinology 155: 1718-27
MeSH Terms: Animals, Appetitive Behavior, Behavior, Animal, Dopamine, Dopaminergic Neurons, Female, Food Preferences, Green Fluorescent Proteins, Homeostasis, Limbic System, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Mutant Strains, Mice, Transgenic, Nerve Tissue Proteins, Ovariectomy, Promoter Regions, Genetic, Receptor, Melanocortin, Type 3, Receptor, Melanocortin, Type 4, Sex Characteristics, Ventral Tegmental Area
Show Abstract · Added May 27, 2014
The melanocortin-3 receptor (MC3R) and MC4R are known to play critical roles in energy homeostasis. However, the physiological functions of the MC3R remain poorly understood. Earlier reports indicated that the ventral tegmental area (VTA) is one of the highest sites of MC3R expression, and we sought to determine the function of the receptor in this brain region. A MC3R-green-fluorescent protein transgenic mouse and a MC3R knockout mouse strain were used to characterize the neurochemical identity of the MC3R neurons in the VTA and to determine the effects of global MC3R deletion on VTA dopamine (DA) homeostasis. We demonstrate that the MC3R, but not MC4R, is expressed in up to a third of dopaminergic neurons of the VTA. Global deletion of the MC3R increases total dopamine by 42% in the VTA and decreases sucrose intake and preference in female but not male mice. Ovariectomy restores dopamine levels to normal, but aberrant decreased VTA dopamine levels are also observed in prepubertal female mice. Because arcuate Agouti-related peptide/neuropeptide Y neurons are known to innervate and regulate VTA signaling, the MC3R in dopaminergic neurons provides a specific input for communication of nutritional state within the mesolimbic dopamine system. Data provided here suggest that this input may be highly sexually dimorphic, functioning as a specific circuit regulating effects of estrogen on VTA dopamine levels and on sucrose preference. Overall, this data support a sexually dimorphic function of MC3R in regulation of the mesolimbic dopaminergic system and reward.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Interactions of hormone replacement therapy, body weight, and bilateral oophorectomy in breast cancer risk.
Cui Y, Deming-Halverson SL, Beeghly-Fadiel A, Lipworth L, Shrubsole MJ, Fair AM, Shu XO, Zheng W
(2014) Clin Cancer Res 20: 1169-78
MeSH Terms: Aged, Body Mass Index, Body Weight, Breast Neoplasms, Case-Control Studies, Female, Hormone Replacement Therapy, Humans, Middle Aged, Ovariectomy, Postmenopause, Public Health Surveillance, Receptor, ErbB-2, Receptors, Estrogen, Receptors, Progesterone, Registries, Risk, Tennessee
Show Abstract · Added March 10, 2014
PURPOSE - To examine potential modifying effects of body weight and bilateral oophorectomy on the association of hormone replacement therapy (HRT) with risk of breast cancer, overall and by subtypes according to status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her2) among postmenopausal women.
EXPERIMENTAL DESIGN - This analysis included 2,510 postmenopausal white women recruited in the Nashville Breast Health Study, a population-based case-control study of breast cancer. Multivariable logistic regression was used to estimate ORs and 95% confidence intervals (CI) for associations between HRT use and risk of breast cancer overall and by subtypes, adjusted for age and education.
RESULTS - Among women with natural menopause and body mass index (BMI) < 25 kg/m(2), ever-use of HRT was associated with increased breast cancer risk (OR, 1.95; 95% CI, 1.32-2.88). Risk was elevated with duration of HRT use (P for trend = 0.002). Similar association patterns were found for ER(+), ER(+)PR(+), and luminal A cancer subtypes but not ER(-), ER(-)PR(-), and triple-negative cancer. In contrast, ever-HRT use in overweight women (BMI ≥ 25 kg/m(2)) showed no association with risk of breast cancer overall or by subtypes; interaction tests for modifying effect of BMI were statistically significant. Ever-HRT use was associated with decreased breast cancer risk (OR, 0.70; 95% CI, 0.38-1.31) among women with prior bilateral oophorectomy but elevated risk (OR, 1.45; 95% CI, 0.92-2.29) among those with hysterectomy without bilateral oophorectomy (P for interaction = 0.057). Similar associations were seen for virtually all breast cancer subtypes, although interaction tests were statistically significant for ER(+) and luminal A only.
CONCLUSION - Body weight and bilateral oophorectomy modify associations between HRT use and breast cancer risk, especially the risk of hormone receptor-positive tumors.
©2014 AACR
0 Communities
3 Members
0 Resources
18 MeSH Terms
Alkaline phosphatases contribute to uterine receptivity, implantation, decidualization, and defense against bacterial endotoxin in hamsters.
Lei W, Nguyen H, Brown N, Ni H, Kiffer-Moreira T, Reese J, Millán JL, Paria BC
(2013) Reproduction 146: 419-32
MeSH Terms: Alkaline Phosphatase, Animals, Cricetinae, Decidua, Embryo Implantation, Endometrium, Enzyme Induction, Escherichia coli Infections, Estrous Cycle, Female, Immunity, Innate, Isoenzymes, Lipopolysaccharides, Mesocricetus, Ovariectomy, Phosphorylation, Placentation, Pregnancy, RNA, Messenger, Uterus
Show Abstract · Added April 9, 2015
Alkaline phosphatase (AP) activity has been demonstrated in the uterus of several species, but its importance in the uterus, in general and during pregnancy, is yet to be revealed. In this study, we focused on identifying AP isozyme types and their hormonal regulation, cell type, and event-specific expression and possible functions in the hamster uterus during the cycle and early pregnancy. Our RT-PCR and in situ hybridization studies demonstrated that among the known Akp2, Akp3, Akp5, and Akp6 murine AP isozyme genes, hamster uteri express only Akp2 and Akp6; both genes are co-expressed in luminal epithelial cells. Studies in cyclic and ovariectomized hamsters established that while progesterone (P₄) is the major uterine Akp2 inducer, both P₄ and estrogen are strong Akp6 regulators. Studies in preimplantation uteri showed induction of both genes and the activity of their encoded isozymes in luminal epithelial cells during uterine receptivity. However, at the beginning of implantation, Akp2 showed reduced expression in luminal epithelial cells surrounding the implanted embryo. By contrast, expression of Akp6 and its isozyme was maintained in luminal epithelial cells adjacent to, but not away from, the implanted embryo. Following implantation, stromal transformation to decidua was associated with induced expressions of only Akp2 and its isozyme. We next demonstrated that uterine APs dephosphorylate and detoxify endotoxin lipopolysaccharide at their sites of production and activity. Taken together, our findings suggest that uterine APs contribute to uterine receptivity, implantation, and decidualization in addition to their role in protection of the uterus and pregnancy against bacterial infection.
0 Communities
1 Members
0 Resources
20 MeSH Terms